
Results/SO251_Lab2Demo_Davies.pdf

9
/
5
/
2
3
1
:
5
3

P
M

G
:
\
M
y

D
r
i
v
e
\
S
O
2
5
1
_
L
a
b
2
D
e
m
o
_
D
a
v
i
e
s
.
m

1

o
f

2

1

%

S
O
2
5
1
_
L
a
b
2
D
e
m
o
_
D
a
v
i
e
s
.
m

2

%

A
l
e
x

D
a
v
i
e
s

3

%

S
O
2
5
1

D
e
s
c
.

P
h
y
s
.

O
c
e
a
n
o
g
r
a
p
h
y

4

%

0
5

S
E
P
T

2
0
2
3

5

6

%

P
u
r
p
o
s
e

7

%

-

R
e
a
d

d
a
t
a

f
r
o
m

C
S
V

8

%

-

P
a
r
s
e

d
a
t
a

t
o

u
s
a
b
l
e

p
r
o
f
i
l
e

9

%

-

M
a
k
e

p
r
o
f
i
l
e

p
l
o
t

1
0

1
1

%

W
o
r
k
e
d

W
i
t
h
:

1
2

%

-

C
A
P
T

P
e
t
r
u
n
c
i
o
,

C
D
R

G
a
r
r
e
t
t

1
3

1
4

%
%

P
R
E
L
I
M
I
N
A
R
I
E
S

1
5

1
6

%

C
l
e
a
r

a
l
l

v
a
r
i
a
b
l
e
s

f
r
o
m

t
h
e

w
o
r
k
s
p
a
c
e
.

C
l
e
a
r

p
l
o
t
t
i
n
g

w
i
n
d
o
w
s

1
7

c
l
e
a
r

a
l
l

1
8

c
l
o
s
e

a
l
l

1
9

2
0

%

R
e
a
d

C
S
V

i
n
t
o

t
a
b
l
e

2
1

t
a
b
l
e
i
n

=

r
e
a
d
t
a
b
l
e
(
'
2
0
2
3
0
8
2
9
_
C
B
D
E
E
P
_
P
5
6
.
c
s
v
'
)
;

2
2

2
3

%

C
o
n
v
e
r
t

T
a
b
l
e

V
a
r
i
a
b
l
e
s

t
o

V
e
c
t
o
r
s
.

C
r
o
p

t
o

o
n
l
y

d
o
w
n
c
a
s
t

2
4

d
e
p
t
h

=

t
a
b
l
e
i
n
{
4
7
:
1
4
5
0
,
1
}
;

2
5

s
a
l

=

t
a
b
l
e
i
n
{
4
7
:
1
4
5
0
,
2
}
;

2
6

t
e
m
p

=

t
a
b
l
e
i
n
{
4
7
:
1
4
5
0
,
3
}
;

2
7

O
2
s
a
t
=

t
a
b
l
e
i
n
{
4
7
:
1
4
5
0
,
4
}
;

2
8

O
2
c
o
n

=

t
a
b
l
e
i
n
{
4
7
:
1
4
5
0
,
5
}
;

2
9

3
0

%
%

S
A
L
I
N
I
T
Y

P
R
O
F
I
L
E

P
L
O
T

3
1

3
2

%

O
p
e
n

f
i
g
u
r
e

w
i
n
d
o
w

3
3

f
i
g
u
r
e
(
1
)

3
4

3
5

%

C
l
e
a
r

l
o
c
a
l

f
i
g
u
r
e

3
6

c
l
f

3
7

s
e
t
(
g
c
a
,
'
F
o
n
t
S
i
z
e
'
,
1
6
)

3
8

3
9

%

h
o
l
d

f
i
g
u
r
e

w
i
n
d
o
w

o
n

f
o
r

p
l
o
t
t
i
n
g

4
0

h
o
l
d

o
n

4
1

9
/
5
/
2
3
1
:
5
3

P
M

G
:
\
M
y

D
r
i
v
e
\
S
O
2
5
1
_
L
a
b
2
D
e
m
o
_
D
a
v
i
e
s
.
m

2

o
f

2

4
2

%

M
a
k
e

p
r
o
f
i
l
e

p
l
o
t
s

4
3

4
4

%

T
u
r
n

o
n

g
r
i
d

4
5

g
r
i
d

o
n

4
6

4
7

%

A
x
i
s

L
a
b
e
l
s

4
8

4
9

5
0

%

L
e
g
e
n
d

5
1

Results/SO251_Lab7Example_Davies.pdf

1
0
/
2
/
2
3
4
:
1
4

P
M

G
:
\
M
y

D
r
i
v
e
\
S
O
2
5
1
_
L
a
b
7
E
x
a
m
p
l
e
_
D
a
v
i
e
s
.
m

1

o
f

3

1

%

S
O
2
5
1
_
L
a
b
9
_
D
a
v
i
e
s
.
m

2

%

I
n
s
t
r
.

A
R

D
a
v
i
e
s

3

%

S
O
2
5
1
:

D
e
s
c
.

P
h
y
.

O
c
e
a
n
o
g
r
a
p
h
y

4

%

2
1

O
C
T

2
0
2
0

5

%

6

%

P
u
r
p
o
s
e
:

7

%

-

R
e
a
d

C
S
V

F
i
l
e
s

8

%

-

P
l
o
t

T
/
S

D
i
a
g
r
a
m
s

9

%

1
0

%

W
o
r
k
e
d

w
i
t
h

1
1

%

-

C
D
R

C
o
r
n
e
l
i
u
s
,

C
D
R

G
a
l
l
a
h
e
r

1
2

%

1
3

%
%

P
R
E
L
I
M
S

1
4

%

1
5

%

C
l
e
a
r
i
n
g

t
h
e

w
o
r
k
s
p
a
c
e
,

C
l
o
s
i
n
g

o
p
e
n

p
l
o
t
t
i
n
g

w
i
n
d
o
w
s

1
6

c
l
e
a
r

a
l
l

1
7

c
l
o
s
e

a
l
l

1
8

%

1
9

%
%

L
O
A
D

T
H
E

W
O
A

D
A
T
A

F
R
O
M

C
S
V

F
I
L
E
S

2
0

%

2
1

%

R
e
a
d

T
e
m
p
e
r
a
t
u
r
e

d
a
t
a

2
2

G
l
o
b
a
l
T
e
m
p
e
r
a
t
u
r
e

=

r
e
a
d
m
a
t
r
i
x
(
'
w
o
a
1
8
_
d
e
c
a
v
_
t
0
0
m
n
0
1
.
x
l
s
x
'
)
;

2
3

%

2
4

%

R
e
a
d

S
a
l
i
n
i
t
y

d
a
t
a

2
5

G
l
o
b
a
l
S
a
l
i
n
i
t
y

=

r
e
a
d
m
a
t
r
i
x
(
'
w
o
a
1
8
_
d
e
c
a
v
_
s
0
0
m
n
0
1
.
x
l
s
x
'
)
;

2
6

%

2
7

%

R
e
a
d

D
e
p
t
h
s

d
a
t
a

2
8

G
l
o
b
a
l
D
e
p
t
h
s

=

r
e
a
d
m
a
t
r
i
x
(
'
W
O
A
d
e
p
t
h
s
.
x
l
s
x
'
)
;

2
9

%

3
0

%
%

D
A
T
A

F
O
R
M
A
T
I
N
G
,

P
R
O
C
E
S
S
I
N
G

A
N
D

C
A
L
C
U
L
A
T
I
O
N
S

3
1

3
2

%

E
x
t
r
a
c
t

D
a
t
a

f
o
r

t
h
e

N
o
r
t
h

A
t
l
a
n
t
i
c

3
3

N
o
r
t
h
A
t
l
a
n
t
i
c
S
a
l
i
n
i
t
y

=

G
l
o
b
a
l
S
a
l
i
n
i
t
y
(
3
0
0
4
9
,
3
:
e
n
d
)
;

3
4

N
o
r
t
h
A
t
l
a
n
t
i
c
T
e
m
p
e
r
a
t
u
r
e

=

G
l
o
b
a
l
T
e
m
p
e
r
a
t
u
r
e
(
3
0
2
6
6
,
3
:
e
n
d
)
;

3
5

3
6

%

E
x
t
r
a
c
t

D
a
t
a

f
o
r

t
h
e

N
o
r
t
h

P
a
c
i
f
i
c

3
7

N
o
r
t
h
P
a
c
i
f
i
c
S
a
l
i
n
i
t
y

=

G
l
o
b
a
l
S
a
l
i
n
i
t
y
(
3
0
3
6
5
,
3
:
e
n
d
)
;

3
8

N
o
r
t
h
P
a
c
i
f
i
c
T
e
m
p
e
r
a
t
u
r
e

=

G
l
o
b
a
l
T
e
m
p
e
r
a
t
u
r
e
(
3
0
5
8
2
,
3
:
e
n
d
)
;

3
9

%

4
0

%
%

P
L
O
T
S
:

T
S

D
i
a
g
r
a
m

4
1

f
i
g
u
r
e
(
1
)

1
0
/
2
/
2
3
4
:
1
4

P
M

G
:
\
M
y

D
r
i
v
e
\
S
O
2
5
1
_
L
a
b
7
E
x
a
m
p
l
e
_
D
a
v
i
e
s
.
m

2

o
f

3

4
2

c
l
f

4
3

h
o
l
d

o
n

4
4

%

4
5

%

T
e
m
p

a
n
d

s
a
l
i
n
i
t
y

a
r
r
a
y
s

d
o

c
a
l
c
u
l
a
t
e

a
n
d

c
o
n
t
o
u
r

s
i
g
m
a
_
t
.

*
*
S
T
U
D
E
N
T
S

W
I
L
L

N
E
E
D

T
O

A
D
J
U
S
T

T
H
I
S

R
A
N
G

B
A
S
E
D

O
N

Y
O
U
R

P
R
O
F
I
L
E

D
A
T
A
*
*

4
6

t
e
m
p
s

=

0
.
:
.
1
:
2
5
;

4
7

s
a
l
s

=

3
3
.
5
:
.
1
:
3
7
.
5
;

4
8

%

4
9

%

U
s
e

t
h
e

m
e
s
h
g
r
i
d

f
u
n
c
t
i
o
n

t
o

t
u
r
n

t
h
e

v
e
c
t
o
r

t
e
m
p
s

a
n
d

s
a
l
s

a
r
r
a
y
s

i
n
t
o

g
r
i
d
d
e
d
,

2
-
D

a
r
r
a
y
s

o
f

t
e
m
p
e
r
a
t
u
r
e

a
n
d

s
a
l
i
n
i
t
y
.

N
o

n
e
e
d

t
o

a
d
j
u
s
t

t
h
i
s

l
i
n
e

o
f

c
o
d
e
.

5
0

[
x
s
a
l
,
y
t
e
m
p
]

=

m
e
s
h
g
r
i
d
(
s
a
l
s
,
t
e
m
p
s
)
;

5
1

%

5
2

%

C
a
l
c
u
l
a
t
e

s
i
g
m
a
-
t

f
r
o
m

g
r
i
d
d
e
d

s
a
l
,

t
e
m
p

a
r
r
a
y
s

d
u
i
n
g

t
h
e

d
e
n
s
i
t
y

f
u
n
c
t
i
o
n
.

A
s
s
u
m
i
n
g

n
o

e
f
f
e
c
t
s

o
f

p
r
e
s
s
u
r
e

o
n

d
e
n
s
i
t
y

a
n
d

s
u
b
t
r
a
c
t
i
n
g

1
0
0
0

(
i
.
e
.

s
i
g
m
a
_
t
)
.

N
o

n
e
e
d

t
o

a
d
j
u
s
t

t
h
i
s

l
i
n
e

o
f

c
o
d
e
.

5
3

z
s
i
g
t

=

(
d
e
n
s
i
t
y
(
x
s
a
l
,
y
t
e
m
p
,
0
)
)
-
1
0
0
0
;

5
4

%

5
5

%

L
i
n
e

c
o
n
t
o
u
r

d
e
n
s
i
t
y

a
s

a

f
u
n
t
i
o
n

o
f

s
a
l
i
n
i
t
y

(
x
-
a
x
i
s
)

a
n
d

t
e
m
p
e
r
a
t
u
r
e

5
6

%

(
y
-
a
x
i
s
)
.

U
s
e
d

d
a
s
h
e
d

l
i
n
e
s
.

N
o

n
e
e
d

t
o

a
d
j
u
s
t

t
h
i
s

l
i
n
e

o
f

c
o
d
e
.

5
7

[
c
,
h
]
=
c
o
n
t
o
u
r
(
x
s
a
l
,
y
t
e
m
p
,
z
s
i
g
t
,
'
-
-
k
'
)

5
8

%

5
9

%

A
d
d

l
a
b
l
e
s

t
o

t
h
e

c
o
n
t
o
u
r
s

o
f

s
i
g
m
a
_
t
.

N
o

n
e
e
d

t
o

a
d
j
u
s
t

t
h
i
s

l
i
n
e

o
f

c
o
d
e
.

6
0

c
l
a
b
e
l
(
c
,
h
,
'
L
a
b
e
l
S
p
a
c
i
n
g
'
,
1
0
0
0
,
'
F
o
n
t
S
i
z
e
'
,
1
6
,
'
F
o
n
t
W
e
i
g
h
t
'
,
'
B
o
l
d
'
,
'
F
o
n
t
N
a
m
e
'
,
'
T
i
m
e
s
'
)
;

6
1

%

6
2

%

A
x
i
s

l
a
b
e
s

a
n
d

a
d
j
u
s
t

f
o
n
t

s
i
z
e
s
,

t
y
p
e
s
.

N
o

n
e
e
d

t
o

a
d
j
u
s
t

t
h
i
s

l
i
n
e

o
f

c
o
d
e
.

6
3

s
e
t
(
g
c
a
,
'
F
o
n
t
S
i
z
e
'
,
2
5
,
'
F
o
n
t
W
e
i
g
h
t
'
,
'
B
o
l
d
'
,
'
F
o
n
t
N
a
m
e
'
,
'
T
i
m
e
s
'
)

;

6
4

x
l
a
b
e
l
(
'
S
a
l
i
n
i
t
y
'
,
'
F
o
n
t
S
i
z
e
'
,
3
5
,
'
F
o
n
t
W
e
i
g
h
t
'
,
'
B
o
l
d
'
,
'
F
o
n
t
N
a
m
e
'
,
'
T
i
m
e
s
'
)

6
5

y
l
a
b
e
l
(
'
T
e
m
p
e
r
a
t
u
r
e

(
^
o
C
)
'
,
'
F
o
n
t
S
i
z
e
'
,
3
5
,
'
F
o
n
t
W
e
i
g
h
t
'
,
'
B
o
l
d
'
,
'
F
o
n
t
N
a
m
e
'
,
'
T
i
m
e
s
'
)

6
6

%

6
7

%

P
l
o
t

s
t
a
t
i
o
n

T
S

D
i
a
g
r
a
m
s

f
o
r

e
a
c
h

s
t
a
t
i
o
n
.

T
h
e

p
l
o
t

a
t
t
r
i
b
u
t
e
s

a
r
e

r
e
a
d

i
n
t
o

t
h
e

a
r
r
a
y

'
p
'

f
o
r

e
a
c
h

p
l
o
t

(
i
n

t
h
i
s

c
a
s
e

p
l
o
t
s

1

a
n
d

2
,

b
u
t

1
-
7

f
o
r

a
l
l

p
r
o
f
i
l
e
s
)
.

*
*
S
T
U
D
E
N
T
S

W
I
L
L

N
E
E
D

T
O

A
D
D

A
L
L

P
R
O
F
I
L
E
S

B
E
L
O
W

W
I
T
H

D
I
F
F
E
R
E
N
T

C
O
L
O
R

L
I
N
E
S
*
*

6
8

p
(
1
)

=

p
l
o
t
(
N
o
r
t
h
A
t
l
a
n
t
i
c
S
a
l
i
n
i
t
y
,
N
o
r
t
h
A
t
l
a
n
t
i
c
T
e
m
p
e
r
a
t
u
r
e
,
'
-
y
'
,
'
L
i
n
e
W
i
d
t
h
'
,
3
)
;

6
9

p
(
2
)

=

p
l
o
t
(
N
o
r
t
h
P
a
c
i
f
i
c
S
a
l
i
n
i
t
y
,
N
o
r
t
h
P
a
c
i
f
i
c
T
e
m
p
e
r
a
t
u
r
e
,
'
-
r
'
,
'
L
i
n
e
W
i
d
t
h
'
,
3
)
;

7
0

%

7
1

%

M
o
r
e

l
i
n
e
,

a
x
i
s

a
n
d

f
i
g
u
r
e

s
p
e
c
s

t
o

m
a
k
e

t
h
i
s

f
i
g
u
r
e
s

l
o
o
k

p
r
o
f
e
s
s
i
o
n
a
l
.

G
o
o
d

f
o
r

s
t
u
d
e
n
t
s

t
o

s
e
e

h
o
w

t
o

d
o

t
h
i
s

f
o
r

f
u
t
u
r
e

r
e
s
e
a
r
c
h

o
r

c
a
p
s
t
o
n
e

c
o
u
r
s
e
.

N
o

n
e
e
d

t
o

a
d
j
u
s
t

t
h
i
s

l
i
n
e

o
f

c
o
d
e
.

7
2

s
e
t
(
g
c
a
,

.
.
.

7
3

'
B
o
x
'

,

'
o
n
'

,

.
.
.

7
4

'
T
i
c
k
D
i
r
'

,

'
i
n

'

,

.
.
.

7
5

'
T
i
c
k
L
e
n
g
t
h
'

,

[
.
0
2

.
0
2
]

,

.
.
.

7
6

'
X
M
i
n
o
r
T
i
c
k
'

,

'
o
n
'

,

.
.
.

7
7

'
Y
M
i
n
o
r
T
i
c
k
'

,

'
o
n
'

,

.
.
.

1
0
/
2
/
2
3
4
:
1
4

P
M

G
:
\
M
y

D
r
i
v
e
\
S
O
2
5
1
_
L
a
b
7
E
x
a
m
p
l
e
_
D
a
v
i
e
s
.
m

3

o
f

3

7
8

'
Y
G
r
i
d
'

,

'
o
n
'

,

.
.
.

7
9

'
X
G
r
i
d
'

,

'
o
n
'

,

.
.
.

8
0

'
X
C
o
l
o
r
'

,

[
0

0

0
]
,

.
.
.

8
1

'
Y
C
o
l
o
r
'

,

[
0

0

0
]
,

.
.
.

8
2

'
L
i
n
e
W
i
d
t
h
'

,

0
.
5
,

.
.
.

8
3

'
l
a
y
e
r
'

,

'
t
o
p
'
)
;

8
4

%

8
5

%

M
a
k
e

L
e
g
e
n
d
.

W
e

d
o
n
'
t

w
a
n
t

t
o

a
d
d

t
h
e

s
i
g
m
a
_
t

c
o
n
t
o
u
r
s

t
o

t
h
e

l
e
g
e
n
d
.

S
o

i
n
s
t
e
a
d

w
e

o
n
l
y

a
l
l

t
h
e

p
l
o
t

a
t
t
r
i
b
u
t
e

i
n

t
h
e

v
a
r
i
a
b
l
e

'
p
'

f
r
o
m

a
b
o
v
e
.

*
*
S
T
U
D
E
N
T
S

W
I
L
L

N
E
E
D

T
O

A
D
D

L
O
C
A
T
I
O
N

N
A
M
E
S

T
O

T
H
E

L
E
G
E
N
D

I
N

T
H
E

O
R
D
E
R

T
H
E
Y

A
R
E

P
L
O
T
T
E
D
*
*

8
6

l
e
g
e
n
d
(
p
,
'
N
o
r
t
h

A
t
l
a
n
t
i
c
'
,
'
N
o
r
t
h

P
a
c
i
f
i
c
'
,
'
L
o
c
a
t
i
o
n
'
,
'
N
o
r
t
h
w
e
s
t
'
)

8
7

%

8
8

%

M
a
k
e

t
h
e

f
i
g
u
r
e

t
h
e

w
i
n
d
o
w

o
n
l
y

h
a
l
f

o
f

t
h
e

c
o
m
p
u
t
e
r

s
c
r
e
e
n

(
l
e
f
t

s
i
d
e
)
.

N
o

n
e
e
d

t
o

a
d
j
u
s
t

t
h
i
s

l
i
n
e

o
f

c
o
d
e
.

8
9

s
e
t

(
f
i
g
u
r
e
(
1
)
,

'
U
n
i
t
s
'
,

'
n
o
r
m
a
l
i
z
e
d
'
,

'
P
o
s
i
t
i
o
n
'
,

[
0
,
.
0
5
,
.
5
,
.
8
5
]
)
;

9
0

%

9
1

%

S
a
v
e

a
s

f
i
g
u
r
e
.

*
*
S
T
U
D
E
N
T
S

W
I
L
L

N
E
E
D

T
O

U
P
D
A
T
E

.
P
N
G

F
I
L
E

N
A
M
E
*
*

9
2

p
r
i
n
t
(
g
c
f
,
'
T
S
_
e
x
a
m
p
l
e
.
p
n
g
'
,
'
-
d
p
n
g
'
,
'
-
r
2
0
0
'
)
;

Results/BoundaryLayer_EkmanLab_SO414_Spring2022.pdf

SO513 Honors Atmospheric and Oceanic Processes

The Atmospheric Boundary Layer and Ekman Spiral Lab

1. Background

Consider an ocean with no interior flow and a horizontal wind field imposing a wind stress along

the surface ocean (𝜏𝑥, 𝜏𝑦). Assuming a steady state, homogenous fluid with no pressure

gradient, the following set of equations represents the flow field in the surface Ekman layer:

−𝑓𝑣 = 𝜐
𝜕2𝑢

𝜕𝑧2

𝑓𝑢 = 𝜐
𝜕2𝑣

𝜕𝑧2

(Eq. 1)

The upper boundary forcing at z = 0 is from the wind stress:

𝜌𝑤𝜐
𝜕𝑣

𝜕𝑧
= 𝜏𝑦

𝜌𝑤𝜐
𝜕𝑢

𝜕𝑧
= 𝜏𝑥

(Eq. 2)

By substituting the upper boundary condition from Equation (2) into Equation (1) the surface

ocean Ekman Layer equations become:

−𝜌𝑤𝑓𝑣 =
𝜕𝜏𝑥

𝜕𝑧

𝜌𝑤𝑓𝑢 =
𝜕𝜏𝑦

𝜕𝑧

(Eq. 3)

With the prescribed upper (Equation 2) and lower (u,v = 0 and z = -∞) boundary conditions, the

solution to Equation (3) in the Northern Hemisphere is:

𝑢 =
𝛿𝐸√2

𝜌𝑤𝑓
𝑒𝛿𝐸𝑧 [𝜏𝑥 cos (𝛿𝐸𝑧 −

𝜋

4
) − 𝜏𝑦sin (𝛿𝐸𝑧 −

𝜋

4
)]

𝑣 =
𝛿𝐸√2

𝜌𝑤𝑓
𝑒𝛿𝐸𝑧 [𝜏𝑥 sin (𝛿𝐸𝑧 −

𝜋

4
) + 𝜏𝑦cos (𝛿𝐸𝑧 −

𝜋

4
)]

(Eq. 4)

where 𝛿𝐸 is one over the Ekman depth, 𝑑 = √2𝜐 𝑓⁄ , and 𝜌𝑤 is the density of water. Assume

the vertical component of the turbulent eddy diffusion, 𝜐, is on the order of 0.1 m2/s and the 𝜌𝑤

= 1025 kg/m3. The analytical solutions to the vertically integrated horizontal velocities (Eq. 4) is

called the Ekman transport:

𝑀𝑥 = ∫ 𝜌𝑤𝑓𝑢 𝑑𝑧 =
𝜏𝑦

𝜌𝑤𝑓

𝑀𝑦 = − ∫ 𝜌𝑤𝑓𝑣 𝑑𝑧 = −
𝜏𝑥

𝜌𝑤𝑓

(Eq. 5)

In the turbulent atmospheric boundary layer, the surface stresses in the x and y directions are:

𝜏𝑥 = −𝜌𝑎 𝑈′𝑥𝑈′𝑧
̅̅ ̅̅ ̅̅ ̅̅ ̅

𝜏𝑦 = −𝜌𝑎 𝑈′𝑦𝑈′𝑧
̅̅ ̅̅ ̅̅ ̅̅ ̅

(Eq. 6)

where 𝜌𝑎 is the density of air and capital U and V denote atmospheric winds (note lowercase u

and v denote ocean currents). However, obtaining reliable measurement of turbulent fluxes in the

marine atmospheric boundary layer (often on a moving ship in heavy seas) has proven difficult.

Instead, scientists use the bulk formula to relate the momentum flux at the ocean surface to more

easily measured variables via the dimensionless drag coefficient, 𝐶𝑑. The bulk formula for the

zonal and meridional wind components are:

𝜏𝑥 = 𝐶𝑑𝑥(𝑈 − 𝑈𝑜)|𝑈 − 𝑈𝑜|

𝜏𝑦 = 𝐶𝑑𝑦(𝑉 − 𝑉𝑜)|𝑉 − 𝑉𝑜|

(Eq. 7)

where 𝑈 and 𝑉 are the “surface” wind speeds (often taken at 10 meters above the surface) and

𝑈𝑜 and 𝑉𝑜 are the wind speeds right at the ground, assumed to be zero for our application. The

bars | | denote absolute values.

2. Tasks

 (1) Plot the drag coefficient versus wind speed for winds ranging 1 to 30 m/s. On the

same plot (using the yyaxis function), plot the wind stress as a function of wind speed.

Calculate the drag coefficient and surface wind stress for ten meter wind speeds ranging 1 to

30 m/s (see Eq. 7). The equation for the neutral drag coefficient comes from the following

paper (you will need to read the paper):

Kevin E. Trenberth, William G. Large, and Jerry G. Olson, 1989: The

Effective Drag Coefficient for Evaluating Wind Stress over the Oceans. J.

Climate, 2, 1507–1516.

In this lab, we make two addition modifications to the neutral drag coefficient

parameterization given by Trenberth, Large, and Olson, (1989):

• If the wind speed is zero, set the drag coefficient to zero (for simplicity).

• Recent scientific studies have shown that at moderate wind speeds, the amplitude and

period of the wind driven, surface gravity waves augment the atmospheric boundary

layer flow by physically decoupling it from the wavy sea surface. This phenomenon

reduces the drag imposed by the sea surface on atmospheric boundary layer flow field

by altering the roughness length. Hence, for wind speeds greater than or equal to 20

m/s, the drag coefficient saturates and is approximately constant, 𝐶𝑑 = 1.8x10-3.

Note that you will need conditional if-elseif-else-end statements within a for loop

of the ten-meter wind speeds to perform the drag coefficient calculation.

(2) Plot the u and v components of the Ekman Spiral (Eq. 4) for U = 10.0 m/s, V = 5.0

m/s, and at a latitude of 40o N. On a separate figure, plot the 3D Ekman spiral for the

above list conditions using the plot3 function.

Remember z is positive upward. Your vertical scale should range z = 0 m to z = -500 m

using a vertical grid spacing of 1 m.

(3) Plot the wind speed (contourf function) and quivered wind direction (quiver

function) using the NorPac_ExampleWinds.mat dataset provided.

Use xlim to constrain you longitude range to 150o E to 240oE and ylim latitude range to

25o N and 75o N. The u and v component wind speeds are in m/s and have the variable

names Uwind and Vwind, respectively. The associated longitude and latitude grids are in

the variables windxgrid and windygrid, respectively. Also plot the coastlines using

by loading and using the coastline.mat data file (you should have this from prior lab

assignments)

(4) Plots quivers of the u and v component winds with quivers of the Mx and My

components of the mass transport using the NorPac_ExampleWinds.mat dataset

provided (i.e. two sets of quivers on the same plot).

Use xlim to constrain you longitude range to 150o E to 240oE and ylim latitude range to

25o N and 75o N. The analytical solutions for Mx and My are found in Equation 5. You

will need to follow the steps (and code) used to make the prior plots in this lab. You will

need to calculate the component drag coefficients and component wind stresses in order

to solve the component mass transport.

3. Deliverable Questions

Answer the following questions using information from Trenberth, et al. (1989), the course notes

or text, the lab background information, and any supplemental outside sources (must be credible

and cited!). Questions to should be answered based on the figures you made, if applicable.

Answers should limited to a well-rounded and scientifically developed paragraph referencing the

applicable figures, notes, text, and paper. All figures can be made as a group and all questions

can be answered and submitted as a group.

(1) Describe the figure in Task 1. Explain physically and mathematically why the drag

coefficient over the open ocean changes with increasing wind speed. How does the

dependence of the drag coefficient on wind speed help to explain how wind stress varies

with wind speed?

(2) Based on your understanding of Trenberth, Large, and Olson, (1989), specifically the

air-sea temperature difference discussion surrounding Figure (1) in that paper, in which

months (generally) would you expect the drag coefficient off the Mid Atlantic coast to be

greater than or less than the neutral drag coefficient (i.e. the solid ∆𝑇 = 0 line in that

figure)? Why?

(3) Does the Ekman Spiral plotted in Task 2 rotate in the correct direction for the

Northern Hemisphere? What would happened in the Southern Hemisphere? Why?

(4) How theoretically does mass transport vary with latitude (holding wind speed

constant)? How does it vary with wind speed?

(5) Based on the figure in Task 4, explain in detail how the quivers of the meridional and

zonal components of the wind speed relate to the corresponding quivers of Mx and My.

(6) Based on the figure in Task 4, where would you expect to see Ekman Pumping (i.e.

wEk negative; downwelling) and/or Ekman Suction (i.e. wEk positive; upwelling?

Results/Exo Sonde Deployment Instructions.pdf

USNA Oceanography Department

EXO SONDE DEPLOYMENT INSTRUCTIONS

FIELD CABLES

EXO1 SONDE

EXO2 SONDE

HANDHELD

1. After connecting all cables and strain reliefs securely, turn handheld unit on
by pressing and holding the green power button.

2. Remove the blue calibration cap from sensor guard to deploy.
3. The deployment of this sonde requires three people:

PERSON 1: Sonde Deployment
PERSON 2: Cord Controller
PERSON 3: Handheld Controller

4. PERSON 1 will lower the sonde until the sensors are just touching the water
and hold there until further notice.

5. PERSON 3 should find “Start Logging…” on the handheld home screen and
press the enter (↵) button.

6. After hitting the enter (↵) button, select Site [INSERT SITE NAME HERE] using
the down (↓) button and again press the enter (↵) button.

7. Select the site you are collecting data from using the up (↑) and down (↓)
buttons.

8. Press the enter (↵) button when the proper site is highlighted.
9. Press the enter (↵) button again when the Dashboard has highlighted ‘Select

[INSERT SITE NAME]’ in green.
10. To being logging, press the enter (↵) button again by selecting ‘Start Now!’ in

green.
11. Once PERSON 3 gives the okay, PERSON 1 will slowly lower the sonde until

they reach the approximate bottom depth of the site and then slowly bring
the sonde back to the surface. During this process, PERSON 2 will make sure
the data cable is properly coiled.

12. Once the sonde has reached the surface, PERSON 3 will select ‘Stop Logging
[00:00:00]’ by pressing the enter (↵) button on the main handheld
dashboard.

13. Proceed to the next site and repeat – remembering to change the site name
at each unique location!

14. Once back in the lab, the sonde should be rinsed with fresh water and
handheld powered off completely.

NOTE: When the EXO Handheld is turned on, the GPS function will initiate a fix of the
location. This may take some time, and the handheld should remain stationary and have a
view of the sky.

Top-Side Micro USM Connector

LCD Screen

Handstrap

Brightness
Enter/Return
Power On/Off

Function Keys
Escape

Arrow Keys
Help Menu

Strain Relief

Male (Black) Wet-Mate Connector

Female (White) Wet-Mate Connector

Rugged Field Cable

Removeable Bail

6-Pin Cable Connector

Upper Battery Compartment Seal

Battery Compartment

Battery Cover

Lower Battery Compartment Seal

Pressure Transducer Opening

Red LED Indicator (Sonde Status)
Blue LED Indicator (Bluetooth)
Magnetic On/Off Switch

Bulkhead
Sensors
Port Plug

Calibration Cup

Sensor Guard
Guard Weight

Removeable Bail
Auxiliary Port
6-Pin Cable Connector

Battery Compartment Seal

Battery Cap/Pressure Relief Valve

Battery Compartment

Magnetic On/Off Switch
Red LED Indicator (Sonde Status)
Blue LED Indicator (Bluetooth)
Bulkhead
Sensors
Port Plug

Sensor Guard

Calibration Cup

Central Wiper

Guard Weight

HANDHELD: Edit handheld
settings such as date/time,
displayed measurement
units, and logging options.

DEPLOY: View and edit a
sonde’s deployment settings
or check the status of
current deployment.

CALIBRATION: Calibrate
sensors installed in the
sonde, check the system’s
SmartQC status, and setup
calibration reminders.

DATA: View, delete, or
backup logged data or
calibration records stored
on the handheld; transfer
data from the connected
sonde.

DASHBOARD: View and log live data
from the sonde. Note that the Dashboard
is the main display and does not have a
hot key.

Wetmate Cable Connector

Results/_15200442 _ Journal of Climate_ The Effective Drag Coefficient for Evaluating Wind Stress over the Oceans.pdf

Brought to you by US NAVAL ACADEMY | Unauthenticated | Downloaded 03/02/22 05:09 PM UTC

Brought to you by US NAVAL ACADEMY | Unauthenticated | Downloaded 03/02/22 05:09 PM UTC

Brought to you by US NAVAL ACADEMY | Unauthenticated | Downloaded 03/02/22 05:09 PM UTC

Brought to you by US NAVAL ACADEMY | Unauthenticated | Downloaded 03/02/22 05:09 PM UTC

Brought to you by US NAVAL ACADEMY | Unauthenticated | Downloaded 03/02/22 05:09 PM UTC

Brought to you by US NAVAL ACADEMY | Unauthenticated | Downloaded 03/02/22 05:09 PM UTC

Brought to you by US NAVAL ACADEMY | Unauthenticated | Downloaded 03/02/22 05:09 PM UTC

Brought to you by US NAVAL ACADEMY | Unauthenticated | Downloaded 03/02/22 05:09 PM UTC

Brought to you by US NAVAL ACADEMY | Unauthenticated | Downloaded 03/02/22 05:09 PM UTC

Brought to you by US NAVAL ACADEMY | Unauthenticated | Downloaded 03/02/22 05:09 PM UTC

Results/An_Introduction_to_MATLAB_SO251_Spring2023.pdf

Introduction to MATLAB Lab–SO251, Fall 2022
Instructor A.R. Davies, Updated: 19 August 2022

Getting Started
If you are an oceanography major, you have probably overheard some of your peers in upper
level courses talking about the positive and negative aspects (likely more negative) of the MATrix
LABoratory software package, or MATLAB. Some oceanography majors sadly find MATLAB to be
overly challenging and unfulfilling, while others view the software as a powerful tool and resource.
The difference in MATLAB perceptions between these two groups of students is not a function of
ability or aptitude, rather it depends on your willingness to:

• Have a positive attitude.

• Have an open mind.

• Learn a computer programming skill that will shape the way you approach problems in this
major and beyond.

• Be patient, pay attention to details, self-identify mistakes, and learn from them.

Indeed, most of the characteristics listed above are also attributes used to describe successful Offi-
cers in the U.S. Navy or U.S. Marine Corps. Hence, MATLAB (or any logical computer language)
is not only a tool you will utilize as an oceanographer, it will also help shape the way you approach
and solve problems as a military officer.

The goal of this assignment is to introduce the basic components of MATLAB in the online/cloud
environment. The skills you learn in this module will serve as a foundation for upper level course
assignments, as well as your capstone or independent research projects. Beyond this major, com-
puter programming skills are highly desirable within the Department of the Navy and in the civilian
sector. It is totally unrealistic to expect you to remember every MATLAB skill introduced in this
assignment. However, you are expected to become familiar with the topics covered in this module
to the extent that you can write your own basic MATLAB scripts online and/or know where to
find additional resources if you get stuck (including this document). The topics covered in this two
day, double period lab are:

• The Online MATLAB Environment

• Arrays Types and Basic Operators

• MATLAB Editor and Scripts

• Loading and Understanding MATLAB .mat Files

• Basic MATALB Functions

• Basic Plotting

Why MATLAB?
This is a perfectly valid question that all MATLAB users will ask themselves throughout their
MATLAB coding career. There are a large number of computer programming languages available
and each has its own advantages and disadvantages. If your objective is to build and run large,
global circulation models that can quickly tax any computer’s processor, memory, and disk space,

perhaps a compiled language like FORTRAN is the most appropriate. If you need a free, open
source software package that has a versatile library of functions and generates clean, presentation
quality graphics, Python is the language for you. If you are heavy into mathematical statistics and
don’t want a compiled language, R may be best.

As you can probably guess from the name, MATLAB began as (and still is) an incredibly powerful
tool for array or matrix manipulation. Hence, the software quickly and relatively painlessly handles
gridded data sets (like many atmospheric or oceanic models and satellite observations) for analysis
and visualization. Other advantages of using MATLAB include:

• The MATLAB desktop and online environments allow you to:

– Work interactively to test algorithms or evaluate blocks of script in the command line
without needing to compile or run your code.

– Keep track of data dimensions and types.
– Manage files including scripts, functions, data, and graphics.

• The MATLAB script editor is interactive and designed to facilitate productivity with quick
search/find features, toggling between scripts, and advanced insertable mathematical func-
tions.

• A comprehensive library of built-in algorithms and functions for data input/output, analysis,
and visualization.

• Built-in, clearly written documentation and a large user community with a lot of free exam-
ples. Both are very useful to new users.

• Built-in graphics.

• MATLAB dynamically allocates variables and multi-dimensional arrays. MATLAB further
allows users to quickly interact visually with arrays at any time.

• MATLAB Online allows you to access your files and run your code from the cloud on any
devise (including phones and tablets).

Let’s get started!

The MATLAB Environment and MATLAB Help
Getting Started with MATLAB Online
The MATLAB online environment requires you to register an account with Mathworks with the
proper USNA licensing information. See instructions from USNA ITSD on how to register you
account with the proper license on https://mathworks.com. Once you have this done, MATLAB
Online can we accessed at https://matlab.mathworks.com. Figure (1) shows the basic MATLAB
online environment.

The MATLAB online environment is a web-based graphical user interface (GUI) designed to make
managing files, data, variables, and graphics easy. Listed below are the four fundamental compo-
nents that make up the MATLAB environment (note: these are fundamentally the same for the
desktop environment). The descriptions below reference Figure (1).

Figure 1: The MATLAB online environment as shown on when first logging on at
https://matlab.mathworks.com time the software was started. The red, blue, orange, and green
boxes are added to show the locations for the online/cloud directory path, current folder window,
command window, and workspace window, respectively.

• Directory Path (red): This displays the path to the current online directory within the
MATLAB Drive (cloud based) where MATLAB is virtually operating. Files can be uploaded to
the MATLAB Drive using the ”upload” button in the with the ”Home” tab. The recommended
file structure in the MATLAB Drive is:

C:\MATLAB Drive\SO[class#]\Lab[#]

• Current Folder Panel (blue): This works in conjunction with the Directory Path. The
Current Folder window displays the contents of the cloud directory your are currently using
in the MATLAB Drive.

• Workspace Panel (green): All variables that are open in the system memory and available
for MATLAB to use are displayed in the Workspace Window. This window is incredibly
powerful and positions MATLAB ahead of most programming languages because it displays
the name and value of each variable alphabetically. As we will see, if the variable is large,
multi-dimensional array, the “value” column in the Workspace Window shows the variable
dimensions and type.

• Command Window Panel (yellow): The interactive command line where commands are
typed and executed. Inputs begin with the MATLAB prompt characters, >>.

Getting Started Using the Command Window
MATLAB commands can be entered manually into the Command Window. This simple, interactive
way to use MATLAB turns the Command Window into a calculator (i.e. if you enter a command,
you will get a result). As an example, use Command Window to calculate 1 + 2.

>> 1 + 2
ans =
3

In the example above, MATLAB was asked to calculate 1 + 2. The result is the number 3 that
is stored in the ans variable. Notice, the variable ans is now in your Workspace with the value
3 assigned to it. The ans variable is MATLAB’s generic output variable if nothing else is as-
signed. For example, let’s try the equation a = 1 + 2. However, in this case, we do not want the
answer to print to the screen, rather we only want the solution to 1+2 to be stored in the variable a.

>> a = 1 + 2;

Figure 2: The Workspace Panel in the desktop environment with the variables ans and a. This is
the same in the online environment.

Unlike the previous example, in this case the variable ans did not print to the screen with the
solution. Instead, the solution to 1 + 2 was stored in the variable a and that variable now exists in
the Workspace. Figure (2) shows that there are now two variables in the Workspace panel (ans and
a) and both contain the value 3. In addition, the contents of variable a did not print to the screen
because the line of code was followed by a semicolon. Note that printing variables to the screen is
not a big deal when using MATLAB as a calculator for simple applications. However, when you
are write more elaborate scripts, printing variables to the screen can significantly slow down the
run time because it requires more upfront system memory. Fortunately, if you are running a long

script that analyzes a large, multi-dimensional arrays and you forget to use the semicolon, there is
a way out. To stop or “kill” a command or block of MATLAB code while it is being executed, use
the following command:

Ctrl-C … should stop MATLAB after a few seconds

In the next example, assign the solution to 1 + 2 to the variable b. There are a few ways to ac-
complish this simple task. Let’s consider each individually. The first (and most obvious) example
would be to assign the variable b to equal the variable a. This can be done because the variable a
is still in the Workspace, and hence is still accessible to MATLAB.

>> b = a
>> b =
3

In this example, after b was set to equal a. the variables a and b were typed into the command line
and MATLAB printed them to the screen. The Workspace also now contains the variables a and
b, both with the value 3. Notice that the order of operations matters! If instead we had typed >>
a = b;, the following error message would be printed to the screen:

>> a = b;
Undefined function or variable 'b'.

In the above example, the logical order of the code would have caused the error because the
variable b did not previously exist within the Workspace. MATLAB assigns variables as:

VariableName = EXPRESSION

where EXPRESSION can be a constant, another variable, or a mathematical expression (i.e. for-
mula). VariableName must always be on the left hand side of the equal sign. Note that equal sign
in the assignment statement does not mean equality. The expression (right hand side) is evaluated
and the result is stored in variable denoted VariableName.

The next approach would be to physically type >> b = 1 + 2; into the command line. MAT-
LAB has a nice built-in feature that makes re-typing previously used lines of code in the Command
Window easy. Simply hit the up arrow key on your keyboard and MATLAB saved the last 25,000
commands you entered. Scroll up or down to the command you want to you. See Figure (3) for an
example.

Figure 3: The Workspace Panel in the desktop environment with easy access to the MATLAB
command history using the up arrow key. This is the same in the online environment.

MATLAB allows users to reuse and delete variable names dynamically. For example, now assign
a = 10 and compute a new variable Friday = 2× b+ a− 3. After Friday is calculated, delete the
a and b from the Workspace using the clear command.

>> a = 10;
>> Friday = 2*b + a - 3
Friday =
13
>> clear a b

In this example, Friday was calculated using the variables a and b from the Workspace. After-
ward, those variables were cleared from the Workspace and are not longer stored in MATLAB’s
memory for use. To clear all variables in the Workspace, the command is simply >> clear all .
This is particularly useful at the beginning of a script to ensure MATLAB is working with a clean
Workspace and there are no unexpected errors. Note also that: (1) MATLAB is case sensitive and
(2) order or operations still matters!

MATLAB Help
MATLAB has a number of built-in help features and resources. The first, is the help command.
The help name command displays the help text for the functionality specified by name, such as a
command, function, method, class, toolbox or variable. For example, Figure (4) shows the help text
for in the Command Windows for whos. The whos command allows you to interactively managing
data arrays in the MATLAB Workspace. whos displays in alphabetical order all variables in the
active Workspace, with information about their sizes and types.

Figure 4: The help text for in the Command Windows for whos.

If you do not specifically know the function, command, sequence, or syntax for a line or section
of code, the MATLAB Documentation is a useful resource for exploring all the MATLAB features
categorically. It can be accessed by either typing doc into the MATLAB Command Window or
online at:

http://www.mathworks.com/help/matlab/

There is power (and help!) in numbers. MathWorks, Inc., the parent company of MATALB, reports
that there more than 1 million MATLAB users worldwide, including users at 5,000 colleges and
universities. Therefore, perhaps the most powerful form of MATLAB help comes from you, the users.
If you cannot solve an issue with your code using MATLAB help or documentation, a GOOGLE
search should be your next step; the chances are that someone else has had the same problem as
you and has posted it to an online help forum seeking assistance. You cannot directly copy and
paste a block of code from an online source without proper citation. Also, you should feel free to use
each other as resources. While COPYING AND PASTING EACH OTHERS CODE IS A CLEAR

ETHICS VIOLATION, working together and helping each other is encouraged. There is a fine line
here; if it feels wrong, it likely is wrong. Please refer to your course policies or specific lab policies
on plagiarism. If you have questions, please contact your course or lab instructor.

Array Types and Basic Operators
Nearly all of MATLAB’s data analysis and processing routines involve the use of arrays, vectors,
and matrices. One of the advantages in using MATLAB (over a language like FORTRAN) is how
the software handles arrays. In many cases, basic array operations can be done in one step using
MATLAB whereas similar operations in other languages often require several lines of code. The
key difference is that MATLAB performs array operations term-by-term.

MATLAB arrays come in three basic types:

Scalar Arrays: Scalar arrays are 1 × 1, single variable arrays. For practical purposes, consider
them numbers. Hence, MATLAB can be used as a basic calculator. Example of a scalar array:

>> a = 2
a =
2

Vector Arrays: Vector arrays are either 1 × m or n × 1 dimension array. A simple, 1 × m row
vector is defined by placing a sequence of numbers between square brackets with spaces as the
delimiter. Example:

>> v = [1 3 27 99 67843]
v =
1 3 27 99 67843

A row vector can be converted into a column vector by rotating it. This operation is identical
to rotating a matrix in linear algebra. Example:
>> vrot = v'
vrot =
1
3
27
99
67843

To better understand the dimensions associated with these two vector arrays, use the whos com-
mand (example below) or reference the MATLAB Workspace.
>> whos v vrot
Name Size Bytes Class Attributes

v 1x5 40 double
vrot 5x1 40 double

MATLAB has a number of tools to quickly create large vectors that feature a repeating sequence

of numbers. For example, linspace and logspace generate linearly and logrymthically spaced vec-
tors, respectively. Refer to MATLAB help or MATLAB doc for details on these commands. The
example below demonstrates another method for creating a vector array spanning 1 to 5 (default
spacing of 1) using a colon.

>> v1 = [1:5]
v1 =
1 2 3 4 5

The example below demonstrates how to create a vector from 2 to 6 (using a colon) with a spacing
of 0.5.

>> vpt5 = [2:.5:6]
vpt5 =
2.0000 2.5000 3.0000 3.5000 4.0000 4.5000 5.0000 5.5000 6.0000

MATLAB will allow you to only access only part of a vector, if needed. Using the vpt5 vector
array above, the example below accesses only the 2nd, 3rd, and 4th elements of the vector array.

>> vpt5(2:4)
ans =
2.5000 3.0000 3.5000

Matrix Arrays: A multi-dimensional, n × m array where n is the number of rows and m is
the number of columns. Example of a 3×3 matrix array:

>> A = [1 2 3; 4 5 6; 7 8 9]
A =
1 2 3
4 5 6
7 8 9

As with vector arrays, MATLAB allows you to access certain elements in a matrix array to define
a new variable or perform a mathematical expression:
>> f = 5;
B = -f*A(1:2,2:3)
B =
-10 -15
-25 -30

Can you follow the order of operations in the above example?

Array Operations
Array operators (e.g. addition, subtraction, etc.) follow the rules of linear algebra and the basic
mathematical order of operations. The examples presented here are the typical uses of array op-
erators in meteorology and oceanography. Consult MATLAB documentation (doc command) or
MATLAB help (help command) for a complete list of array operators, their proper use, and the

order or operations.

For this section, define the following two square matrices with dimensions 2×2, along with a 1×1
scalar array:

A =

[
a11 a12
a21 a22

]

B =

[
b11 b12
b21 b22

]

S =
[
s11

]
Array Addition and Subtraction

For matrices with equal dimensions (not restricted to square matrices), addition and subtraction
of matrices is accomplished term-by-term:

A+B =

[
a11 + b11 a12 + b12
a21 + b21 a22 + b22

]

A−B =

[
a11 − b11 a12 +−b12
a21 − b21 a22 − b22

]

Addition or subtraction of a scalar is also accomplished term-by-term. In the case of a scalar, the
matrices do not need to be the same size.

A+ S =

[
a11 + s11 a12 + s11
a21 + s11 a22 + s11

]

A− S =

[
a11 − s11 a12 +−s11
a21 − s11 a22 − s11

]

For example, using the arrays defined below, use MATALB to calculate C=A+B and D=(A-B)+S.

>> A = [[1 2];[3 4]] A =
1 2
3 4
>> B = [[40 45];[50 55]] B =
40 45
50 55
>> S = 10;
>>
>> C = A+B
C =
41 47
53 59
>>
>> D = (A-B)+S

D =
-29 -33
-37 -41

Array Multiplication

There are two ways to multiply arrays in MATLAB: Matrix Multiplication and Element-wise
Multiplication. The two operations are drastically different; this section will describe both.

Matrix Multiplication

Matrices can be multiplied together only if the number of columns in the first matrix equals the
number of rows in the second matrix. For example, if an array X has dimensions 10×20, and Y has
dimensions 20×7, then the multiplication of X*Y is defined and the result is a 10×7 matrix. In this
case, Y*X is not allowed because the number of columns of Y (seven) does not match the number
of rows of X (ten). This follows the rules of matrix multiplication in linear algebra.

Using the above defined square matrix arrays A and B, the solutions to A*B and B*A are dif-
ferent:

A ∗B =

[
a11b11 + a12b21 a11b12 + a12b22
a21b11 + a22b21 a21b12 + a22b22

]

B ∗A =

[
b11a11 + b12a21 b11a12 + b12a22
b21a11 + b22a21 b21a11 + b22a21

]

Note: Multiplication of a matrix of any size by a scalar is always defined, and S*A = A*S.

For example, using the arrays defined below, use MATALB to calculate H=A*B and K=B*A.

>> A = [[1 2];[3 4]] A =
1 2
3 4
>> B = [[40 45];[50 55]] B =
40 45
50 55
>> S = 10;
>>
>> H = A*B
H =
140 155
320 355
>>
>> K = B*A
K =
175 260
215 320

Element-wise Multiplication

Two matrices which are the same size can be multiplied together using the “.* ” array opera-
tor. Matrices do not need to be square. Since the operator is applied term-by-term, A .* B and B
.* A are equal:

A. ∗B =

[
a11 ∗ b11 a12 ∗ b12
a21 ∗ b21 a22 ∗ b22

]

Note: Multiplication of a matrix of any size by a scalar is always term-by-term, so there is no
difference when using the “’ * ” or “’ .* ” operators.

For example, using the arrays defined below, use MATALB to calculate A.*B (the same as B.*A)
and A*S.
>> A = [[1 2];[3 4]]

A =
1 2
3 4
>> B = [[40 45];[50 55]] B =
40 45
50 55
>> S = 10;
>>
>> A.*B
ans =
40 90
150 220
>>
>> A*S
ans =
100 200
300 400

Array Division

Like with array multiplication, in MATLAB there are two ways to divide arrays: Matrix Divi-
sion and Element-wise Division. The two types of division mirror the two types of multiplication in
use and operation. Because of the similarities with array multiplication, this section will not outline
all aspects of the two types of array division, rather it will provide a quick overview. Please read
the above Array Multiplication section and consult MATLAB Documentation for more information.

Matrix Division

Matrix division, using either the forward (/) or backward (\) slash, is related to taking the in-
verse of a matrix while solving a set of simultaneous equations. For the same size, square matrix
arrays A and B defined above, A/B equals A*B−1 and A\B equals A−1*B. For simplicity, it is

recommended to only use the forward slash operator.

Also note, division by a scalar matrix is defined only if the scalar is in the denominator for Matrix
Division.

Element-wise Division

Array division, using either the forward (./) or backward (.\) slash, is term-by-term division ap-
plied to same-sized matrices (not restricted to square matrices). Note that A./B and A.\B do not
produce the same result:

A./B =

[
a11/b11 a12/b12
a21/b21 a22/b22

]

A.\B =

[
b11/a11 b12/a12
b21/a21 b22/a22

]

Note: Element-wise division with a scalar matrix is defined when the scalar is in either the numerator
or denominator.

Scripts and the MATLAB Editor
MATLAB M-files are ordinary ASCII text files, which contain a set of MATLAB commands to
be executed in the order listed. An M-file is a MATLAB program. The file extension of all M-files
must be “.m”. Example: mainprogram.m.

MATLAB will only recognize and execute file names ending with “.m.” For example, if MATLAB
commands are listed in a file named “mainprogram.txt”, MATLAB will not execute the commands
in this file because it does not recognize the file extention as something executable. The easiest
way to create M-file is within the MATLAB Editor. There are two types of M-files, script files and
function files. The section will only discus script M-Files, while the following section will outline
functions.

Script M-Files
Script M-files or “scripts” are common, yet powerful computer programming feature. They are often
favored over typing commands into the Command Window manually because script files execute
faster than if each command was entered one-by-one, provide a record of the commands used to
produce the result, can be edited to correct mistakes, can be modified for additional use, and can
be shared with other users for collaborative work.

While M-files do not have to be coded in MATLAB, the software has a built-in file editor that
makes the processes easier. The advantage to using the MATLAB editor is that it uses colors to
highlight comment lines, text strings, and certain programming commands (such as “if”, “else”, and
“end”). This is helpful for new programmers. Note that there is no difference between files created
with a built-in or external text editor. The percent sign denotes a comment line. MATLAB totally
ignores all text to the right of the percent sign (i.e. these lines are powerful for you to describe

what is happening line-by-line in your code).

To get started, use the “blank script” icon in the MATLAB desktop environment to open a blank
(new) M-file. All scripts for this course (and most in the Oceanography Department) must have
the following documentation at the top of each file:

Line 1: The file name
Line 2: Student Name
Line 3: Course Number and Name
Line 4: Date
Line 5: Skip with % comment sign
Line 6: Purpose of the Program (list below):
Line 7: Skip with % comment sign
Line 8: MIDN or other you worked with (list below)
Once done listing your collaborators, skip a line with % comment sign
Use %% — to denote a new section of your code

For Example:
% SO251_Lab1_Guy.m
% MIDN 3/C Some Guy
% 18 August 2022
%
% Purpose of the Program:
% 1. Learn How to Create a Script
%
% Worked with:
% 1. MIDN 2/C Some Dude
%
%% ---------------------------------------

Additional comments are required throughout the script eveytime you introduce the use of a
new function or create a new variable. The more comments, the better. For this lab (and likely
many of the courses in the Oceanography Department), if you have the prefect code/solution and
forget to comment your work, you will lose a substantial number of points. Commenting should
always be your own words and thoughts. To prevent questions about plagiarism, if an equation in
the script is from a textbook or journal article, use comments lines to cite the source and appro-
priate equation/page numbers therein.

To execute a script, type the name of the file (without the “.m”) on the command line. Note that
you must be in the directory the script is located in to run it. For example, to execute (or run) a
script M-file call program2.m, type the following into the Command Window:

>> program2 not:>> program2.m

In addition, you can hit the ”Run” button from the Script Editor.

Scripting Tips
Script files use variables already defined in the Workspace. Any additional variables defined within
the script are added to the Workspace and are available for use within the script or afterward once
the script finishes running. For example, assume the Workspace contains the variables A, B, C.
The script program2.m is executed and defines the new variables X, Y and Z. After program2.m
finishes running, the variables in the Workspace are now A, B, C, X, Y, Z. To ensure you are not
stuck with unwanted variables in the work space, it is recommended to always use the clear and
close commands as the first non-commented lines of code at the top of a script file (see example
below).

If you are copying a command from the Command Window into a script, make sure the MAT-
LAB prompt >> is removed. Copy only the command!

Save your work every few minutes, in case of a computer problem. On a PC, MATLAB saves
for you using the file extension “.asv” (meaning autosave). At times, a network crash will cause you
to lose the file you are currently editing. If it is an extremely important file, save it occasionally
with a different file name.

Script Example
Write a script that creates the a 2×5 matrix array of your choice. Rotate the matrix to form a 5×2
array. Multiply the elements in the top two rows by 5. ONLY print the top two rows of the final
array to the screen. Be sure you use the proper file header and comments where necessary.

% SO51_ScriptExample1_Davies.m
% Instructor Alex Davies
% SO251 Desc. Physical Oceanography
% 18 August 2022
%
% Purpose of the Program:
% 1. Create a 2×5 matrix array.
% 2. Rotate the matrix array, multiple the top rows by 5
% 3. Print the top two rows of the final matrix array to the screen.
%
% Worked with:
% 1. N/A.
%
%% ---------------------------------------
%
% BEGIN MAIN PROGRAM
%
%% ---------------------------------------
%
% Clear the Workspace
clear all
close all
%
% Create a 2x5 matrix array
y = [[1 2 3 4 5];[6 7 8 9 10]];
%
% Rotate the 2x5 matrix to for a 5x2 matrix
y = y';
%
% Multiply the elements in the top two rows by 5.
y(1:2,1:2) = y(1:2,1:2)*5

MATLAB Functions
Function M-files are different from script M-files. Functions are blocks of code that can be (and
often need to be) executed many times. Hence, storing a block of code that is used repeatedly in
a different file prevents a programmer from repeatedly adding the same block of code to a script file.

Functions are typically used within the main program (i.e. the script M-file) where they are “called”
or executed using variables in the existing MATLAB Workspace. Multiple functions can be called
within the same program and an individual function can be called multiple times. Functions can
even be called within another function. Listed below are some advantages and disadvantages of
using functions.

Advantages:

• Functions break your program into separate tasks (modular programming).

• With functions, you write your code once, test it, and use it many times.

• The main program is easier to read when function names and comment lines are informative.

• Functions keep the interactive MATLAB Workspace free of unnecessary variables.

• Functions can be called upon by multiple programs.

Disadvantages:

• Functions are harder to test because the local variables, which may be needed for debugging,
are not passed to the interactive MATLAB Workspace.

• Using functions increases the number of M-files to keep track of in your directory.

Making a Function
Unlike script M-files, MATLAB requires that the first line of a function M-file has a manda-
tory structure. It begins with the word “function,” which identifies the file to MATLAB as a
function instead of a script M-file. The first line contains the following elements, listed in the order
they must appear (left to right):

• The word “function”, with a space after the word.

• The output variables of the function enclosed in square brackets and separated by commas.
If the function has no output variables, the square brackets are omitted.

• The name of the function, which must exactly match the name of the file (for exampple, if
the function name is abserror, the file name must be abserror.m).

• The funtion input variables enclosed in parentheses and separated by commas. If the function
has no input variables, the parentheses are omitted

When a function is executed, a separate area of memory is used for the local variables within the
function. This memory is separate from the MATLAB Workspace and it is informally called the
“Function Workspace.”

Variable input/output flow is described below:

Input variables are the variables with the MATLAB Workspace that are passed to the
function and the stored in the Function Workspace. Output variables are generated dur-
ing the execution of the function. Once the function finishes running, these variables are
passed back and stored in the MATLABWorkspace. Note that only variables designated
as output variables in the first line of the function (in square brackets) will be passed
back. Local variables are also defined within the function and stored in the Function
Workspace, but are not designated as either input or output variables. Therefore local
variables are erased from memory at the end of the function execution and cannot be
retrieved.

Note that since the MATLAB and Function Workspaces are separate, the variable names do not
have to match. If you are writing the function, feel free to use variable names that match those
used in your main program. If you are using a function that someone else wrote, chances are the
variable names will not match your naming conventions. This is not a problem.

As an example, below is the first line of a function named abserror.m.

function [X,Y] = abserror(A,B)

In the line of code above, the input variables are A and B and the output variables calculated
within the function code are X and Y.

A block of comments should be placed at the top of the function M-file and just after the function
definition line. Functions often contain the following documentation:

• The Purpose: Describes what the function does.

• List of Input Variables: Variable names, meaning, and units

• List of Output Variables: Variable names, meaning, and units

• List of Local Variables: Variable names, meaning, and units.

• Functions Called: List name of functions called by this function. DO NOT list MATLAB
built-in functions. If none, list “None” or ommit this section.

• References: If you are using an equation from a textbook or journal article, this is a very
convenient place to document the source of your information. If you have no references, you
may omit this section.

• Author/Collaborator Name(s) and Date

Consider the function on the next page that calculates practical salinity from temperature and
conductivity measurements. The function file name is salinityfunc.m

function [Sal] = salinityfunc(Temp,Cond_measured)
% Purpose:
% Calculate practical Salinity from temperature and conductivity observations.
%
% Input Variables:
% Temp = Temperature (degrees C)
% Cond_measured = Conductivity (micro S/m)
%
% Output Variables:
% Sal = Practical Salinity (PSU)
%
% Local Variables:
% a0, a1, a2, a3, a4, a5, b0, b1, b2, b3 ,b4 ,b5, k = Coefficients
% K15 = Conductivity Ratio
% Cond_std = The conductivity of a standardized KCl solution
% with a salinity of 35 PSU at the temperature of 15 degrees C.
% DelS = Conductivity to Salinity conversion adjustment for temperature
%
% References:
% Millero, F.J., 2006, Chemical Oceanography, 3rd Edition, Taylor
% and Francis Group, pg. 63-67.
%
% Chemiasoft, 2014, Salinity Calculator: http://www.chemiasoft.com/chemd/
% salinity_calculator, accessed 20 September 2016.
%
% Written By: Inst. A.R. Davies, USNA 18 August 2022
%
%% ---
%
% Calculate the Conductivity Standard (function of temperature)
Cond_std = -0.026724.*Temp.∧3 + 4.663694.*Temp.∧2 + 861.30276.*Temp + 29035.16408;
%
% Calculate Conductivity Ratio
K15 = Cond_measured./Cond_std;
%
% Assign Coefficients for DelS Calculation
b0 = 0.0005; b1 = -0.0056; b2 = -0.0066; b3 = -0.0375; b4 = 0.0636; b5 = -0.0144;
k = 0.0162;
%
% Calculate DelS
DelS = ((Temp-15)/(1+k*(Temp-15))).*(b0+b1*(K15).∧(.5)+b2*(K15)+b3*(K15).∧(1.5) ...
+b4*(K15).∧(2)+b5*(K15).∧(2.5));
%
% Assign Coefficients for Salinity Calculation
a0 = 0.0080; a1 = -0.1692; a2 = 25.3851; a3 = 14.0941; a4 = -7.0261; a5 = 2.7081;
%
% Calculation Salinity
Sal = (a0+a1*K15.∧(.5)+a2*(K15)+a3*(K15).∧(1.5)+a4*(K15).∧(2)+a5*(K15).∧(2.5))+DelS;

To run the salinityfunc.m function, it needs to be saved in the directory where you are cur-
rently working and/or the directory where the script that calls the function is located. An example
of how to call the function from the Command Window is:

>> [Salinity] = salinityfunc(Temperature,Conductivity)

This will only return the variable Salinity to the Workspace. Note that the variable arrays
Temperature and Conductivity must have the same dimensions, and that the output variable,
Salinity, will have the same dimensions as the input variables in this specific case. The input
variables must be in the correct order.

Note: If you do not want to pass one or more of the output variables from the function to the
MATLAB Workspace, a tilde is used in place of that output variable when the function is called.

Useful Functions in MATLAB
MATLAB has a library of built-in functions that make programming quick and easy. Please ref-
erence MATLAB help or the MATLAB Documentation online or via the doc command for a
complete list of built-in functions. Below are tables with commonly useful MATLAB Functions.

Basic Mathematics
Function Description
mean(X) Returns the arithmetic mean or average of the array X.
median(X) Returns the middle value or the arithmetic mean of the two

middle values of the array X.
std(X) Returns the standard deviation of the array X.
max(X),min(X) Returns the largest (max) and smallest (min) value of array X.
sum(X) Computes and returns the sum of the array X.
cumsum(X) Computes and returns the cumulative sum of the array X. For

example, if X=[1 2 3 4], cumsum(X) returns [1 3 6 10]
sin(X), cos(x), tan(x) Returns the sine, cosine, tangent of the array X. Similar func-

tions for related trigonometric applications are available.
R = deg2rad(D) Computes and returns the angle from degrees to radians. D =

rad2deg(R) does the opposite.
C = cross(A,B) Computes and returns the cross product of A and B.
C = dot(A,B) Computes and returns the scalar dot product of A and B.
pi Returns the floating-point number nearest the value of π.
div = divergence(X,Y,U,V) Computes and returns the divergence of a 2-D vector field hav-

ing vector components U and V. The arrays X and Y define the
coordinates for the vector components U and V. See MATLAB
Documentation for details and with 3-D vector fields.

[curlz,cav] = curl(X,Y,U,V) Computes and returns the 2-D curl (curlz) and angular veloc-
ity (cav) perpendicular to the flow (in radians per time unit)
of a 2-D vector field U, V. The arrays X and Y define the co-
ordinates for the vector components U and V. See MATLAB
Documentation for details and with 3-D vector fields.

Basic Arrays and Language Fundamentals
Function Description
clc Clears only the text from Command Window display.
y = linspace(x1,x2,n) Generates and returns a vector array of n points between x1

and x2. The spacing between the points is (x2-x1)/(n-1).
y = logspace(a,b,n) Generates and returns a vector array of n logarithmically

spaced points between 10∧a and 10∧b.
X=zeros(sz1,...,szN) Returns a sz1-by-...-by-szN array of zeros where sz1,...,szN in-

dicate the size of each dimension.
[X,Y]=meshgrid(xgv,ygv) Replicates the grid vectors arrays xgv and ygv to produce and

return a full matrix array grid. This grid is represented by the
output coordinate arrays X and Y. The output coordinate ar-
rays X and Y contain copies of the grid vectors xgv and ygv
respectively. The sizes of the output arrays are determined by
the length of the grid vectors. For grid vectors xgv and ygv of
length M and N respectively, X and Y will have N rows and M
columns. See MATLAB Documentation for 3-D uses.

L=length(X) Returns the length of the largest array dimension in X. For
vectors, the length is simply the number of elements. For arrays
with more dimensions, the length is max(size(X)). The length
of an empty array is zero.

NaN Returns the IEEE arithmetic representation for Not-a-Number
(NaN). These values result from operations which have unde-
fined numerical results.

TF = isnan(A) Returns an array the same size as A containing logical 1 (true)
where the elements of A are NaNs and logical 0 (false) where
they are not.

Inf Returns the IEEE arithmetic representation for positive infin-
ity.

double(X) Returns the double-precision value for X. If X is already a
double-precision array, double has no effect.

B=fliplr(A) Returns the array A with its columns flipped in the left-right
direction (that is, about a vertical axis).

B = flipud(A) Returns the array A with its rows flipped in the up-down di-
rection (that is, about a horizontal axis).

B = sort(A,dim) Returns the sorted elements of A along dimension dim.
r = rand Returns a single random number uniformly distributed over

(0,1). Its value changes each time the command is invoked.
r = rand(m,n) Returns an m×n martix of independent, uniformly distributed

random entries.
rand('seed',57) Sets the “seed” of the pseudo-random number generator to 57.

Once the seed is set to a given value, the algorithm always
produces the same sequence of random numbers. This is useful
if you need to use the same random numbers more than once,
or to produce identical runs of the same simulation.

Basic, 2-D Graphics
Function Description
plot(X,Y,LineSpec) Creates a 2-D line plot of the data in Y versus the corresponding

values in X. If X and Y are both vectors, then they must have
equal length. If X and Y are both matrices, then they must
have equal size. LineSpec sets the line style, marker symbol,
and color. Non-linear axis plots, including loglog, semilogx,
and semilogy are also available. See MATLAB Documentation
for additional details, uses, and examples, including how to use
the LineSpec’s.

plotyy(X1,Y1,X2,Y2,fcns) Plots Y1 versus X1 with y-axis labeling on the left and plots
Y2 versus X2 with y-axis labeling on the right. The plotting
functions fcn1 and fcn2 correspond to the values X1,Y1 and
X2,Y2, respectively. They are a string specifying plot, semilogx,
semilogy, loglog, stem, or any MATLAB function that accepts
the syntax . See MATLAB Documentation for details, uses, and
examples.

histogram(X,nbins,edges) Creates a histogram plot of X that uses a number of bins spec-
ified by the scalar, nbins, and sorts X into bins with the bin
edges specified by the vector, edges. See MATLAB Documen-
tation for details, uses, and examples.

pie(X,labels) Draws a pie chart using the data in X. labels specifies text
labels for the slices. See MATLAB Documentation for details,
uses, and examples.

scatter(x,y) Creates a scatter plot with circles at the locations specified by
the vectors x and y.

title(str) Adds the title consisting of a string, str, at the top and in the
center of the current axes.

xlabel(str) Labels the x-axis of the current axes with the text specified by
str.

ylabel(str) Labels the y-axis of the current axes with the string, str.
legend(s1,...,sN) Creates a legend in the current axes using the specified strings

to label each set of data. The legend shows an icon of the as-
sociated object next to each string.

xlim(limits), ylim(limits) Specifies the x-axis and y-axis limits for the current axes. Spec-
ify limits as a two-element vector of the form [min max], where
max is a numeric value greater than min.

hold on Retains plots in the current axes so that new plots added to
the axes do not delete existing plots.

hold on Sets the hold state to off so that new plots added to the axes
clear existing plots and reset all axes properties.

figure Creates a new figure window using default property values.
view([90 90]) Places the coordinate system origin in the upper-left corner.

The i-axis is vertical, with values increasing from top to bottom.
The j-axis is horizontal with values increasing from left to right.

Loading and Understanding .mat Files
MAT-files are binary MATLAB data files (not human readable) that store variables. The load
command is used to load a binary “.mat” files into the active Workspace. If the same variable name
is in the MATALB Workspace and in the .mat file to be loaded, the variable previously in the
Workspace will be overwritten by the variable loaded in from the .mat file.

As an example of how to load a .mat data file, use the following command to load a file that con-
tains monthly averages of water temperature (oC), conductivity (µScm−1), and calculated practical
salinity (psu) from College Creek. Note the MAT file must be in your current working directory to
load.

load('MonthlyAvg_CollegeCreek_20152016.mat')

The data is this file was collected by a YSI EXO2 Sonde owned by the USNA Center for Chesa-
peake Bay Observations and Modeling (CCBOM) and deployed on an oyster reef in College Creek
by Professor Cecily Steppe, Ph.D., Instructor Andrew Keppel, and Mr. Luis Rodriguez in the
Oceanography Department. The goal of this deployment is to collect water quality data on an
activity oyster bar in the Severn River to establish an environmental baseline. For more informa-
tion about this project or if you are interested in independent research related to this deployment
or oyster restoratoin in the area, please contact either Instructor Keppel (keppel@usna.edu) or
Professor Steppe (natunewi@usna.edu). Note that the sensors on the EXO2 Sonde measure con-
ductivity and use an internal algorythm developed by YSI, Inc. to calculate practical salinity (psu).

If the file is successfully loaded, four new data arrays will show-up in the Workspace (Conductivity,
Temperature, Salinity, Month) and are now accessible for computational use in your Command
Window or a script. You can double click each variable to open it in the Variable Editor to visually
see the contents. The whos command will provide information about the arrays.

The ability to save your Workspace variables for future use is an advantage that MATLAB has
over other programming languages. For example, if you generate variables by typing in ten com-
mands into the Command Window on a Monday, you may want to access those variables again on
Wednesday. Without saving the Workspace that contains those variables using the save command
(or manually saving it), on Wednesday you would need to re-execute all ten commands in the pre-
cise order you did on Monday. What a pain!

For example, add one to the variable Month to create Month_plusone and save the workspace
as:

save('MonthlyAvg_CollegeCreek_20152016_edited.mat')

Basic Line Plotting
MATLAB provides built-in functions for visualizing data in multiple dimensions. In this lab, we
will focus only on basic line plots with titles, axis labels, and legends. A brief overview of these
basic plotting functions are listed above and more information is available through the MATLAB
Documentation and MATLAB help.

To introduce basic plotting, consider the following example script that loads monthly averages
of water temperature (oC), conductivity (µScm−1), and the practical salinity (psu) calculated from
the YSI software from the file MonthlyAvg_CollegeCreek_20152016.mat. In this example, we will
write a script to plot temperature and conductivity as a function of month, use the salinityfunc
function to calculate the practical salinity, and finally plot the Sonde calculated salinity against
the salinityfunc calculation as a function of month. Note that both the MAT file and function
need to be in the directory where the script is saved.

% SO251_ScriptExample2_Davies.m
% Instructor Alex Davies
% SO251 Desc. Physcial Oceanography
% 18 August 2022
%
% Purpose of the Program:
% 1. Load and plot month avergaed temperature and conductivity data collected
% in College Creek by a YSI EXO2 Sonde.
% 2. Call the salinityfunc.m function to calc practical salinity.
% 3. Plot the practical salinity calculated using the salinityfunc.m function
% against what was calculated by the YSI software.
%
% Worked with:
% Inst. Tracy, Mr. Hickman, and Prof. Steppe who collected the data
%
%% ---------------------------------------
% BEGIN MAIN PROGRAM
%% ---------------------------------------
%
% Clear the Workspace
clear all
close all
%
% Load the .mat file into the Workspace
load('MonthlyAvg_CollegeCreek.mat');
%
% Calculate the pratical salinity using the salinityfunc.m function
[Sal_calc] = salinityfunc(Temperature,Conductivity);
%
%% ---------------------------------------
% PLOTTING
%% ---------------------------------------

%
% Plot Temperature (C)
figure()% Creates new figure
plot(Month,Temperature,'-ko')% plots the temp w/solid black line and circles
title('Monthly Avg Temperature (C) in College Creek 2015-2016.')% title
xlabel('Month')% X axis Label
ylabel('Temperature (C)')% Y axis Label
ylim([0 30])% Y axis limits
xlim([1 12])% X axis limits
grid on % makes a gird on the plot
saveas(gcf,'CollegeCreek_Temperature.png') % saves the file
%
% Plot Conductivity (microS/cm)
figure()
plot(Month,Conductivity','--∧b')% plots the cond. w/dash blue line and triangles
title('Monthly Avg Conductivity (microS/cm) in College Creek 2015-2016.')
xlabel('Month')
ylabel('Conductivity (mircoS/cm)')
ylim([.8e4 2.5e4])
xlim([1 12])
grid on
saveas(gcf,'CollegeCreek_Conductivity.png')
%
% Plot YSI Practical Salinity and Our Calculated Salinity (PSU)
figure()
plot(Month,Salinity,'-ko')% plots the sal w/solid black line and circles
hold on% hold the figure
plot(Month,Sal_calc,'--rs')% plots the sal w/dash red line and squares
legend('YSI Prac Salinity','Calc Prac Salnity','Location','northwest')% Adds a legend
to the upper left corner
title('Monthly Avg Practical Salinity (psu) at in College Creek 2015-2016.')
xlabel('Month')
ylabel('Salinity (psu)')
xlim([1 12])
ylim([6 18])
grid on
saveas(gcf,'CollegeCreek_PracSalinity.png')

In the example above, the figure() function is used to start each new figure window for plot-
ting. You can think of this like the making a new canvas to paint on; each picture requires a new
canvas. Notice in the last figure with plots of practical salinity, the hold on function was used to
hold the figure for additional plotting. Think of this like a painter using one color on a canvas (i.e.
YSI practical salinity) then using another color on the same canvas (i.e.your calculated practical
salinity) to pain the complete picture. The saveas() function was also used in this example and
gcf tells MATLAB to save the current figure.

Oceanic Profile Plotting
Now that we’ve made a basic line plot, we need to modify the scripting techniques for an oceano-
graphic profile plot. The primary difference between the two is conceptual. In a traditional x-y plot,
the x variable is usually the independent variable while the dependent variable is plotted along the
y-axis. In the example above we plotted temperature (dependent variable on the y-axis) as it varied
with respect to time (independent variable on the x-axis). In contrast, oceanographic profile plots
show how a variable (e.g. temperature, salinity, etc.) varies as a function of depth (the independent
variable). The example below illustrates how to make this type of plot.

% SO251_ScriptExample3_Davies.m
% Instructor Alex Davies
% SO251 Desc. Physical Oceanography
% 18 August 2022
%
% Purpose of the Program:
% 1. Load data from a .mat file
% 2. Plot a vertical salinity profile.
%
% Worked with:
% Inst. Tracy and Mr. Hickman
%
%% PRELIMINARIES
%
% Clear the Workspace
clear all
close all
%
% Load the .mat file into the Workspace
load('ExampleCBayProfile.mat');
%
%% SALINITY PROFILE PLOT
%
% Create new figure window
figure(1)
%
% Clear anything that could potentially be in the plotting window
clf
%
% Plots salinity with red line and circles
plot(salinity,-depth,'o','MarkerSize',10,'LineWidth',2,'LineStyle','-','Color','r')
%
% x- and y-axis labels; title
title('Salinty Profile at the Deepweater Station','FontSize',18,'FontWeight','Bold')
xlabel('Salinity')
ylabel('Z (m)')
%

% xlims and ylims
xlim([0 19])
ylim([-26 0])
%
% Add a grid
grid on
%
% Make all fonts bigger
set(gca,'FontSize',18,'FontWeight','Bold')

Histogram Plotting
Next we will explore how to make a histogram in MATLAB. We will once again use the monthly
average data set from College Creek

% SO251_ScriptExample4_Davies.m
% Instructor Alex Davies
% SO251 Desc. Physical Oceanography
% 18 August 2022
%
% Purpose of the Program:
% 1. Load data from a .mat file
% 2. Make a histogram plot of temperature with known bin sizes
%
% Worked with:
% N/A
%
%% PRELIMINARIES
%
% Clear the Workspace
clear all
close all
%
% Load the .mat file into the Workspace
load('ExampleCBayProfile.mat');
%
%% CREATE HISTOGRAM OF TEMPERATURE WITH KNOWN BINS
%
figure(3)
clf;
histogram(Temperature,[2.5:5:32.5])% Specifies 6 bins (5 though 30) with 2.5 degrees
as the +/- range in each direction
xticks([5:5:30])% Sets the ticks along the x-axis to match the bins (5 though 30)
yticks([0:1:5])% Sets the ticks y-axis to be integers within range
ylim([0 5])
xlabel('2015-2016 Monthly Avg. College Creek Temperatures (C)')
ylabel('Frequency')

Results/MATLAB_Homework___SO251_Fall_2023.pdf

MATLAB Homework
SO251 Name & Alpha:

Questions 1-5 are to be answered on this sheet. Write a Matlab script to answer Question 6. Re-
member to use the proper script header information and comment all code. This work is to be
completed individually.

1. 3Consider the following array:

G =

33 55 10
42 6 99
11 26 94
15 28 54
98 2 67

a) What are the dimensions of the array G?

b) Is array G a scalar, vector, or matrix array?

c) What is the value of G(4,3)?

2. 2In the first section of the Intro to MATLAB handout, numerous advantages of using MATLAB
were listed. List two:

3. 2If you are coding in MATLAB and get stuck, there are many resources available assist you.
Name the two:

4. 5Answer the following five questions true or false.
a) The MATLAB Workspace is where all variables that are open in the system memory and
available for MATLAB to use are displayed.

b) MATLAB Documentation can be accessed by either typing doc into the MATLAB Com-
mand Window or online.

c) If given the following two matrices A and B:

A =

[
1 0
0 3

]

B =

[
1 1
0 0

]

A.*B = B.*A.

d) You should never list or cite the people you work with on a MATLAB script.

e) Computer programming skills (like MATLAB) are not highly desirable within the Depart-
ment of the Navy and in the civilian sector. They are basically a totally worthless skill in the
modern, technology-based economy and the world of Cyber Warfare and Data Science.

5. 4Refer to the sequence of code below. True or False: If R = 4 + n*m, then R = P. Why?

>> n = [15 25; 35 45];

>> m = [2 5; 5 2];

>> P = n.*m + 4

P =
34 129
179 94

6. 14Write a script (with proper header and comments!) to do the following:
a) Create the following three matrix arrays:

A =

 1 14 0 7
34 10 87 3
41 65 54 13

B =

[
13 41
344 1

]

C =

[
10 15
20 30

]

b) As discussed in the lab handout, MATLAB allows you to access select elements from a ma-
trix array to define a new matrix or variable. In the Matlab script, create a new 2×2 matrix,
D from the original A matrix, as follows and print D to the screen.

D =

[
10 87
65 54

]

c) In the Matlab script, element-wise multiply the D matrix by the C matrix to create the N
matrix and print P to the screen.
d) In the script, use array operators to transform B into the following matrix (print to screen):[

11 131.5
131 163

]

Results/An_Introduction_to_MATLAB_SO251_Fall_2022.pdf

Introduction to MATLAB Lab–SO251, Fall 2022
Instructor A.R. Davies, Updated: 19 August 2022

Getting Started
If you are an oceanography major, you have probably overheard some of your peers in upper
level courses talking about the positive and negative aspects (likely more negative) of the MATrix
LABoratory software package, or MATLAB. Some oceanography majors sadly find MATLAB to be
overly challenging and unfulfilling, while others view the software as a powerful tool and resource.
The difference in MATLAB perceptions between these two groups of students is not a function of
ability or aptitude, rather it depends on your willingness to:

• Have a positive attitude.

• Have an open mind.

• Learn a computer programming skill that will shape the way you approach problems in this
major and beyond.

• Be patient, pay attention to details, self-identify mistakes, and learn from them.

Indeed, most of the characteristics listed above are also attributes used to describe successful Offi-
cers in the U.S. Navy or U.S. Marine Corps. Hence, MATLAB (or any logical computer language)
is not only a tool you will utilize as an oceanographer, it will also help shape the way you approach
and solve problems as a military officer.

The goal of this assignment is to introduce the basic components of MATLAB in the online/cloud
environment. The skills you learn in this module will serve as a foundation for upper level course
assignments, as well as your capstone or independent research projects. Beyond this major, com-
puter programming skills are highly desirable within the Department of the Navy and in the civilian
sector. It is totally unrealistic to expect you to remember every MATLAB skill introduced in this
assignment. However, you are expected to become familiar with the topics covered in this module
to the extent that you can write your own basic MATLAB scripts online and/or know where to
find additional resources if you get stuck (including this document). The topics covered in this two
day, double period lab are:

• The Online MATLAB Environment

• Arrays Types and Basic Operators

• MATLAB Editor and Scripts

• Loading and Understanding MATLAB .mat Files

• Basic MATALB Functions

• Basic Plotting

Why MATLAB?
This is a perfectly valid question that all MATLAB users will ask themselves throughout their
MATLAB coding career. There are a large number of computer programming languages available
and each has its own advantages and disadvantages. If your objective is to build and run large,
global circulation models that can quickly tax any computer’s processor, memory, and disk space,

perhaps a compiled language like FORTRAN is the most appropriate. If you need a free, open
source software package that has a versatile library of functions and generates clean, presentation
quality graphics, Python is the language for you. If you are heavy into mathematical statistics and
don’t want a compiled language, R may be best.

As you can probably guess from the name, MATLAB began as (and still is) an incredibly powerful
tool for array or matrix manipulation. Hence, the software quickly and relatively painlessly handles
gridded data sets (like many atmospheric or oceanic models and satellite observations) for analysis
and visualization. Other advantages of using MATLAB include:

• The MATLAB desktop and online environments allow you to:

– Work interactively to test algorithms or evaluate blocks of script in the command line
without needing to compile or run your code.

– Keep track of data dimensions and types.
– Manage files including scripts, functions, data, and graphics.

• The MATLAB script editor is interactive and designed to facilitate productivity with quick
search/find features, toggling between scripts, and advanced insertable mathematical func-
tions.

• A comprehensive library of built-in algorithms and functions for data input/output, analysis,
and visualization.

• Built-in, clearly written documentation and a large user community with a lot of free exam-
ples. Both are very useful to new users.

• Built-in graphics.

• MATLAB dynamically allocates variables and multi-dimensional arrays. MATLAB further
allows users to quickly interact visually with arrays at any time.

• MATLAB Online allows you to access your files and run your code from the cloud on any
devise (including phones and tablets).

Let’s get started!

The MATLAB Environment and MATLAB Help
Getting Started with MATLAB Online
The MATLAB online environment requires you to register an account with Mathworks with the
proper USNA licensing information. See instructions from USNA ITSD on how to register you
account with the proper license on https://mathworks.com. Once you have this done, MATLAB
Online can we accessed at https://matlab.mathworks.com. Figure (1) shows the basic MATLAB
online environment.

The MATLAB online environment is a web-based graphical user interface (GUI) designed to make
managing files, data, variables, and graphics easy. Listed below are the four fundamental compo-
nents that make up the MATLAB environment (note: these are fundamentally the same for the
desktop environment). The descriptions below reference Figure (1).

Figure 1: The MATLAB online environment as shown on when first logging on at
https://matlab.mathworks.com time the software was started. The red, blue, orange, and green
boxes are added to show the locations for the online/cloud directory path, current folder window,
command window, and workspace window, respectively.

• Directory Path (red): This displays the path to the current online directory within the
MATLAB Drive (cloud based) where MATLAB is virtually operating. Files can be uploaded to
the MATLAB Drive using the ”upload” button in the with the ”Home” tab. The recommended
file structure in the MATLAB Drive is:

C:\MATLAB Drive\SO[class#]\Lab[#]

• Current Folder Panel (blue): This works in conjunction with the Directory Path. The
Current Folder window displays the contents of the cloud directory your are currently using
in the MATLAB Drive.

• Workspace Panel (green): All variables that are open in the system memory and available
for MATLAB to use are displayed in the Workspace Window. This window is incredibly
powerful and positions MATLAB ahead of most programming languages because it displays
the name and value of each variable alphabetically. As we will see, if the variable is large,
multi-dimensional array, the “value” column in the Workspace Window shows the variable
dimensions and type.

• Command Window Panel (yellow): The interactive command line where commands are
typed and executed. Inputs begin with the MATLAB prompt characters, >>.

Getting Started Using the Command Window
MATLAB commands can be entered manually into the Command Window. This simple, interactive
way to use MATLAB turns the Command Window into a calculator (i.e. if you enter a command,
you will get a result). As an example, use Command Window to calculate 1 + 2.

>> 1 + 2
ans =
3

In the example above, MATLAB was asked to calculate 1 + 2. The result is the number 3 that
is stored in the ans variable. Notice, the variable ans is now in your Workspace with the value
3 assigned to it. The ans variable is MATLAB’s generic output variable if nothing else is as-
signed. For example, let’s try the equation a = 1 + 2. However, in this case, we do not want the
answer to print to the screen, rather we only want the solution to 1+2 to be stored in the variable a.

>> a = 1 + 2;

Figure 2: The Workspace Panel in the desktop environment with the variables ans and a. This is
the same in the online environment.

Unlike the previous example, in this case the variable ans did not print to the screen with the
solution. Instead, the solution to 1 + 2 was stored in the variable a and that variable now exists in
the Workspace. Figure (2) shows that there are now two variables in the Workspace panel (ans and
a) and both contain the value 3. In addition, the contents of variable a did not print to the screen
because the line of code was followed by a semicolon. Note that printing variables to the screen is
not a big deal when using MATLAB as a calculator for simple applications. However, when you
are write more elaborate scripts, printing variables to the screen can significantly slow down the
run time because it requires more upfront system memory. Fortunately, if you are running a long

script that analyzes a large, multi-dimensional arrays and you forget to use the semicolon, there is
a way out. To stop or “kill” a command or block of MATLAB code while it is being executed, use
the following command:

Ctrl-C … should stop MATLAB after a few seconds

In the next example, assign the solution to 1 + 2 to the variable b. There are a few ways to ac-
complish this simple task. Let’s consider each individually. The first (and most obvious) example
would be to assign the variable b to equal the variable a. This can be done because the variable a
is still in the Workspace, and hence is still accessible to MATLAB.

>> b = a
>> b =
3

In this example, after b was set to equal a. the variables a and b were typed into the command line
and MATLAB printed them to the screen. The Workspace also now contains the variables a and
b, both with the value 3. Notice that the order of operations matters! If instead we had typed >>
a = b;, the following error message would be printed to the screen:

>> a = b;
Undefined function or variable 'b'.

In the above example, the logical order of the code would have caused the error because the
variable b did not previously exist within the Workspace. MATLAB assigns variables as:

VariableName = EXPRESSION

where EXPRESSION can be a constant, another variable, or a mathematical expression (i.e. for-
mula). VariableName must always be on the left hand side of the equal sign. Note that equal sign
in the assignment statement does not mean equality. The expression (right hand side) is evaluated
and the result is stored in variable denoted VariableName.

The next approach would be to physically type >> b = 1 + 2; into the command line. MAT-
LAB has a nice built-in feature that makes re-typing previously used lines of code in the Command
Window easy. Simply hit the up arrow key on your keyboard and MATLAB saved the last 25,000
commands you entered. Scroll up or down to the command you want to you. See Figure (3) for an
example.

Figure 3: The Workspace Panel in the desktop environment with easy access to the MATLAB
command history using the up arrow key. This is the same in the online environment.

MATLAB allows users to reuse and delete variable names dynamically. For example, now assign
a = 10 and compute a new variable Friday = 2× b+ a− 3. After Friday is calculated, delete the
a and b from the Workspace using the clear command.

>> a = 10;
>> Friday = 2*b + a - 3
Friday =
13
>> clear a b

In this example, Friday was calculated using the variables a and b from the Workspace. After-
ward, those variables were cleared from the Workspace and are not longer stored in MATLAB’s
memory for use. To clear all variables in the Workspace, the command is simply >> clear all .
This is particularly useful at the beginning of a script to ensure MATLAB is working with a clean
Workspace and there are no unexpected errors. Note also that: (1) MATLAB is case sensitive and
(2) order or operations still matters!

MATLAB Help
MATLAB has a number of built-in help features and resources. The first, is the help command.
The help name command displays the help text for the functionality specified by name, such as a
command, function, method, class, toolbox or variable. For example, Figure (4) shows the help text
for in the Command Windows for whos. The whos command allows you to interactively managing
data arrays in the MATLAB Workspace. whos displays in alphabetical order all variables in the
active Workspace, with information about their sizes and types.

Figure 4: The help text for in the Command Windows for whos.

If you do not specifically know the function, command, sequence, or syntax for a line or section
of code, the MATLAB Documentation is a useful resource for exploring all the MATLAB features
categorically. It can be accessed by either typing doc into the MATLAB Command Window or
online at:

http://www.mathworks.com/help/matlab/

There is power (and help!) in numbers. MathWorks, Inc., the parent company of MATALB, reports
that there more than 1 million MATLAB users worldwide, including users at 5,000 colleges and
universities. Therefore, perhaps the most powerful form of MATLAB help comes from you, the users.
If you cannot solve an issue with your code using MATLAB help or documentation, a GOOGLE
search should be your next step; the chances are that someone else has had the same problem as
you and has posted it to an online help forum seeking assistance. You cannot directly copy and
paste a block of code from an online source without proper citation. Also, you should feel free to use
each other as resources. While COPYING AND PASTING EACH OTHERS CODE IS A CLEAR

ETHICS VIOLATION, working together and helping each other is encouraged. There is a fine line
here; if it feels wrong, it likely is wrong. Please refer to your course policies or specific lab policies
on plagiarism. If you have questions, please contact your course or lab instructor.

Array Types and Basic Operators
Nearly all of MATLAB’s data analysis and processing routines involve the use of arrays, vectors,
and matrices. One of the advantages in using MATLAB (over a language like FORTRAN) is how
the software handles arrays. In many cases, basic array operations can be done in one step using
MATLAB whereas similar operations in other languages often require several lines of code. The
key difference is that MATLAB performs array operations term-by-term.

MATLAB arrays come in three basic types:

Scalar Arrays: Scalar arrays are 1 × 1, single variable arrays. For practical purposes, consider
them numbers. Hence, MATLAB can be used as a basic calculator. Example of a scalar array:

>> a = 2
a =
2

Vector Arrays: Vector arrays are either 1 × m or n × 1 dimension array. A simple, 1 × m row
vector is defined by placing a sequence of numbers between square brackets with spaces as the
delimiter. Example:

>> v = [1 3 27 99 67843]
v =
1 3 27 99 67843

A row vector can be converted into a column vector by rotating it. This operation is identical
to rotating a matrix in linear algebra. Example:
>> vrot = v'
vrot =
1
3
27
99
67843

To better understand the dimensions associated with these two vector arrays, use the whos com-
mand (example below) or reference the MATLAB Workspace.
>> whos v vrot
Name Size Bytes Class Attributes

v 1x5 40 double
vrot 5x1 40 double

MATLAB has a number of tools to quickly create large vectors that feature a repeating sequence

of numbers. For example, linspace and logspace generate linearly and logrymthically spaced vec-
tors, respectively. Refer to MATLAB help or MATLAB doc for details on these commands. The
example below demonstrates another method for creating a vector array spanning 1 to 5 (default
spacing of 1) using a colon.

>> v1 = [1:5]
v1 =
1 2 3 4 5

The example below demonstrates how to create a vector from 2 to 6 (using a colon) with a spacing
of 0.5.

>> vpt5 = [2:.5:6]
vpt5 =
2.0000 2.5000 3.0000 3.5000 4.0000 4.5000 5.0000 5.5000 6.0000

MATLAB will allow you to only access only part of a vector, if needed. Using the vpt5 vector
array above, the example below accesses only the 2nd, 3rd, and 4th elements of the vector array.

>> vpt5(2:4)
ans =
2.5000 3.0000 3.5000

Matrix Arrays: A multi-dimensional, n × m array where n is the number of rows and m is
the number of columns. Example of a 3×3 matrix array:

>> A = [1 2 3; 4 5 6; 7 8 9]
A =
1 2 3
4 5 6
7 8 9

As with vector arrays, MATLAB allows you to access certain elements in a matrix array to define
a new variable or perform a mathematical expression:
>> f = 5;
B = -f*A(1:2,2:3)
B =
-10 -15
-25 -30

Can you follow the order of operations in the above example?

Array Operations
Array operators (e.g. addition, subtraction, etc.) follow the rules of linear algebra and the basic
mathematical order of operations. The examples presented here are the typical uses of array op-
erators in meteorology and oceanography. Consult MATLAB documentation (doc command) or
MATLAB help (help command) for a complete list of array operators, their proper use, and the

order or operations.

For this section, define the following two square matrices with dimensions 2×2, along with a 1×1
scalar array:

A =

[
a11 a12
a21 a22

]

B =

[
b11 b12
b21 b22

]

S =
[
s11

]
Array Addition and Subtraction

For matrices with equal dimensions (not restricted to square matrices), addition and subtraction
of matrices is accomplished term-by-term:

A+B =

[
a11 + b11 a12 + b12
a21 + b21 a22 + b22

]

A−B =

[
a11 − b11 a12 +−b12
a21 − b21 a22 − b22

]

Addition or subtraction of a scalar is also accomplished term-by-term. In the case of a scalar, the
matrices do not need to be the same size.

A+ S =

[
a11 + s11 a12 + s11
a21 + s11 a22 + s11

]

A− S =

[
a11 − s11 a12 +−s11
a21 − s11 a22 − s11

]

For example, using the arrays defined below, use MATALB to calculate C=A+B and D=(A-B)+S.

>> A = [[1 2];[3 4]] A =
1 2
3 4
>> B = [[40 45];[50 55]] B =
40 45
50 55
>> S = 10;
>>
>> C = A+B
C =
41 47
53 59
>>
>> D = (A-B)+S

D =
-29 -33
-37 -41

Array Multiplication

There are two ways to multiply arrays in MATLAB: Matrix Multiplication and Element-wise
Multiplication. The two operations are drastically different; this section will describe both.

Matrix Multiplication

Matrices can be multiplied together only if the number of columns in the first matrix equals the
number of rows in the second matrix. For example, if an array X has dimensions 10×20, and Y has
dimensions 20×7, then the multiplication of X*Y is defined and the result is a 10×7 matrix. In this
case, Y*X is not allowed because the number of columns of Y (seven) does not match the number
of rows of X (ten). This follows the rules of matrix multiplication in linear algebra.

Using the above defined square matrix arrays A and B, the solutions to A*B and B*A are dif-
ferent:

A ∗B =

[
a11b11 + a12b21 a11b12 + a12b22
a21b11 + a22b21 a21b12 + a22b22

]

B ∗A =

[
b11a11 + b12a21 b11a12 + b12a22
b21a11 + b22a21 b21a11 + b22a21

]

Note: Multiplication of a matrix of any size by a scalar is always defined, and S*A = A*S.

For example, using the arrays defined below, use MATALB to calculate H=A*B and K=B*A.

>> A = [[1 2];[3 4]] A =
1 2
3 4
>> B = [[40 45];[50 55]] B =
40 45
50 55
>> S = 10;
>>
>> H = A*B
H =
140 155
320 355
>>
>> K = B*A
K =
175 260
215 320

Element-wise Multiplication

Two matrices which are the same size can be multiplied together using the “.* ” array opera-
tor. Matrices do not need to be square. Since the operator is applied term-by-term, A .* B and B
.* A are equal:

A. ∗B =

[
a11 ∗ b11 a12 ∗ b12
a21 ∗ b21 a22 ∗ b22

]

Note: Multiplication of a matrix of any size by a scalar is always term-by-term, so there is no
difference when using the “’ * ” or “’ .* ” operators.

For example, using the arrays defined below, use MATALB to calculate A.*B (the same as B.*A)
and A*S.
>> A = [[1 2];[3 4]]

A =
1 2
3 4
>> B = [[40 45];[50 55]] B =
40 45
50 55
>> S = 10;
>>
>> A.*B
ans =
40 90
150 220
>>
>> A*S
ans =
100 200
300 400

Array Division

Like with array multiplication, in MATLAB there are two ways to divide arrays: Matrix Divi-
sion and Element-wise Division. The two types of division mirror the two types of multiplication in
use and operation. Because of the similarities with array multiplication, this section will not outline
all aspects of the two types of array division, rather it will provide a quick overview. Please read
the above Array Multiplication section and consult MATLAB Documentation for more information.

Matrix Division

Matrix division, using either the forward (/) or backward (\) slash, is related to taking the in-
verse of a matrix while solving a set of simultaneous equations. For the same size, square matrix
arrays A and B defined above, A/B equals A*B−1 and A\B equals A−1*B. For simplicity, it is

recommended to only use the forward slash operator.

Also note, division by a scalar matrix is defined only if the scalar is in the denominator for Matrix
Division.

Element-wise Division

Array division, using either the forward (./) or backward (.\) slash, is term-by-term division ap-
plied to same-sized matrices (not restricted to square matrices). Note that A./B and A.\B do not
produce the same result:

A./B =

[
a11/b11 a12/b12
a21/b21 a22/b22

]

A.\B =

[
b11/a11 b12/a12
b21/a21 b22/a22

]

Note: Element-wise division with a scalar matrix is defined when the scalar is in either the numerator
or denominator.

Scripts and the MATLAB Editor
MATLAB M-files are ordinary ASCII text files, which contain a set of MATLAB commands to
be executed in the order listed. An M-file is a MATLAB program. The file extension of all M-files
must be “.m”. Example: mainprogram.m.

MATLAB will only recognize and execute file names ending with “.m.” For example, if MATLAB
commands are listed in a file named “mainprogram.txt”, MATLAB will not execute the commands
in this file because it does not recognize the file extention as something executable. The easiest
way to create M-file is within the MATLAB Editor. There are two types of M-files, script files and
function files. The section will only discus script M-Files, while the following section will outline
functions.

Script M-Files
Script M-files or “scripts” are common, yet powerful computer programming feature. They are often
favored over typing commands into the Command Window manually because script files execute
faster than if each command was entered one-by-one, provide a record of the commands used to
produce the result, can be edited to correct mistakes, can be modified for additional use, and can
be shared with other users for collaborative work.

While M-files do not have to be coded in MATLAB, the software has a built-in file editor that
makes the processes easier. The advantage to using the MATLAB editor is that it uses colors to
highlight comment lines, text strings, and certain programming commands (such as “if”, “else”, and
“end”). This is helpful for new programmers. Note that there is no difference between files created
with a built-in or external text editor. The percent sign denotes a comment line. MATLAB totally
ignores all text to the right of the percent sign (i.e. these lines are powerful for you to describe

what is happening line-by-line in your code).

To get started, use the “blank script” icon in the MATLAB desktop environment to open a blank
(new) M-file. All scripts for this course (and most in the Oceanography Department) must have
the following documentation at the top of each file:

Line 1: The file name
Line 2: Student Name
Line 3: Course Number and Name
Line 4: Date
Line 5: Skip with % comment sign
Line 6: Purpose of the Program (list below):
Line 7: Skip with % comment sign
Line 8: MIDN or other you worked with (list below)
Once done listing your collaborators, skip a line with % comment sign
Use %% — to denote a new section of your code

For Example:
% SO251_Lab1_Guy.m
% MIDN 3/C Some Guy
% 18 August 2022
%
% Purpose of the Program:
% 1. Learn How to Create a Script
%
% Worked with:
% 1. MIDN 2/C Some Dude
%
%% ---------------------------------------

Additional comments are required throughout the script eveytime you introduce the use of a
new function or create a new variable. The more comments, the better. For this lab (and likely
many of the courses in the Oceanography Department), if you have the prefect code/solution and
forget to comment your work, you will lose a substantial number of points. Commenting should
always be your own words and thoughts. To prevent questions about plagiarism, if an equation in
the script is from a textbook or journal article, use comments lines to cite the source and appro-
priate equation/page numbers therein.

To execute a script, type the name of the file (without the “.m”) on the command line. Note that
you must be in the directory the script is located in to run it. For example, to execute (or run) a
script M-file call program2.m, type the following into the Command Window:

>> program2 not:>> program2.m

In addition, you can hit the ”Run” button from the Script Editor.

Scripting Tips
Script files use variables already defined in the Workspace. Any additional variables defined within
the script are added to the Workspace and are available for use within the script or afterward once
the script finishes running. For example, assume the Workspace contains the variables A, B, C.
The script program2.m is executed and defines the new variables X, Y and Z. After program2.m
finishes running, the variables in the Workspace are now A, B, C, X, Y, Z. To ensure you are not
stuck with unwanted variables in the work space, it is recommended to always use the clear and
close commands as the first non-commented lines of code at the top of a script file (see example
below).

If you are copying a command from the Command Window into a script, make sure the MAT-
LAB prompt >> is removed. Copy only the command!

Save your work every few minutes, in case of a computer problem. On a PC, MATLAB saves
for you using the file extension “.asv” (meaning autosave). At times, a network crash will cause you
to lose the file you are currently editing. If it is an extremely important file, save it occasionally
with a different file name.

Script Example
Write a script that creates the a 2×5 matrix array of your choice. Rotate the matrix to form a 5×2
array. Multiply the elements in the top two rows by 5. ONLY print the top two rows of the final
array to the screen. Be sure you use the proper file header and comments where necessary.

% SO51_ScriptExample1_Davies.m
% Instructor Alex Davies
% SO251 Desc. Physical Oceanography
% 18 August 2022
%
% Purpose of the Program:
% 1. Create a 2×5 matrix array.
% 2. Rotate the matrix array, multiple the top rows by 5
% 3. Print the top two rows of the final matrix array to the screen.
%
% Worked with:
% 1. N/A.
%
%% ---------------------------------------
%
% BEGIN MAIN PROGRAM
%
%% ---------------------------------------
%
% Clear the Workspace
clear all
close all
%
% Create a 2x5 matrix array
y = [[1 2 3 4 5];[6 7 8 9 10]];
%
% Rotate the 2x5 matrix to for a 5x2 matrix
y = y';
%
% Multiply the elements in the top two rows by 5.
y(1:2,1:2) = y(1:2,1:2)*5

MATLAB Functions
Function M-files are different from script M-files. Functions are blocks of code that can be (and
often need to be) executed many times. Hence, storing a block of code that is used repeatedly in
a different file prevents a programmer from repeatedly adding the same block of code to a script file.

Functions are typically used within the main program (i.e. the script M-file) where they are “called”
or executed using variables in the existing MATLAB Workspace. Multiple functions can be called
within the same program and an individual function can be called multiple times. Functions can
even be called within another function. Listed below are some advantages and disadvantages of
using functions.

Advantages:

• Functions break your program into separate tasks (modular programming).

• With functions, you write your code once, test it, and use it many times.

• The main program is easier to read when function names and comment lines are informative.

• Functions keep the interactive MATLAB Workspace free of unnecessary variables.

• Functions can be called upon by multiple programs.

Disadvantages:

• Functions are harder to test because the local variables, which may be needed for debugging,
are not passed to the interactive MATLAB Workspace.

• Using functions increases the number of M-files to keep track of in your directory.

Making a Function
Unlike script M-files, MATLAB requires that the first line of a function M-file has a manda-
tory structure. It begins with the word “function,” which identifies the file to MATLAB as a
function instead of a script M-file. The first line contains the following elements, listed in the order
they must appear (left to right):

• The word “function”, with a space after the word.

• The output variables of the function enclosed in square brackets and separated by commas.
If the function has no output variables, the square brackets are omitted.

• The name of the function, which must exactly match the name of the file (for exampple, if
the function name is abserror, the file name must be abserror.m).

• The funtion input variables enclosed in parentheses and separated by commas. If the function
has no input variables, the parentheses are omitted

When a function is executed, a separate area of memory is used for the local variables within the
function. This memory is separate from the MATLAB Workspace and it is informally called the
“Function Workspace.”

Variable input/output flow is described below:

Input variables are the variables with the MATLAB Workspace that are passed to the
function and the stored in the Function Workspace. Output variables are generated dur-
ing the execution of the function. Once the function finishes running, these variables are
passed back and stored in the MATLABWorkspace. Note that only variables designated
as output variables in the first line of the function (in square brackets) will be passed
back. Local variables are also defined within the function and stored in the Function
Workspace, but are not designated as either input or output variables. Therefore local
variables are erased from memory at the end of the function execution and cannot be
retrieved.

Note that since the MATLAB and Function Workspaces are separate, the variable names do not
have to match. If you are writing the function, feel free to use variable names that match those
used in your main program. If you are using a function that someone else wrote, chances are the
variable names will not match your naming conventions. This is not a problem.

As an example, below is the first line of a function named abserror.m.

function [X,Y] = abserror(A,B)

In the line of code above, the input variables are A and B and the output variables calculated
within the function code are X and Y.

A block of comments should be placed at the top of the function M-file and just after the function
definition line. Functions often contain the following documentation:

• The Purpose: Describes what the function does.

• List of Input Variables: Variable names, meaning, and units

• List of Output Variables: Variable names, meaning, and units

• List of Local Variables: Variable names, meaning, and units.

• Functions Called: List name of functions called by this function. DO NOT list MATLAB
built-in functions. If none, list “None” or ommit this section.

• References: If you are using an equation from a textbook or journal article, this is a very
convenient place to document the source of your information. If you have no references, you
may omit this section.

• Author/Collaborator Name(s) and Date

Consider the function on the next page that calculates practical salinity from temperature and
conductivity measurements. The function file name is salinityfunc.m

function [Sal] = salinityfunc(Temp,Cond_measured)
% Purpose:
% Calculate practical Salinity from temperature and conductivity observations.
%
% Input Variables:
% Temp = Temperature (degrees C)
% Cond_measured = Conductivity (micro S/m)
%
% Output Variables:
% Sal = Practical Salinity (PSU)
%
% Local Variables:
% a0, a1, a2, a3, a4, a5, b0, b1, b2, b3 ,b4 ,b5, k = Coefficients
% K15 = Conductivity Ratio
% Cond_std = The conductivity of a standardized KCl solution
% with a salinity of 35 PSU at the temperature of 15 degrees C.
% DelS = Conductivity to Salinity conversion adjustment for temperature
%
% References:
% Millero, F.J., 2006, Chemical Oceanography, 3rd Edition, Taylor
% and Francis Group, pg. 63-67.
%
% Chemiasoft, 2014, Salinity Calculator: http://www.chemiasoft.com/chemd/
% salinity_calculator, accessed 20 September 2016.
%
% Written By: Inst. A.R. Davies, USNA 18 August 2022
%
%% ---
%
% Calculate the Conductivity Standard (function of temperature)
Cond_std = -0.026724.*Temp.∧3 + 4.663694.*Temp.∧2 + 861.30276.*Temp + 29035.16408;
%
% Calculate Conductivity Ratio
K15 = Cond_measured./Cond_std;
%
% Assign Coefficients for DelS Calculation
b0 = 0.0005; b1 = -0.0056; b2 = -0.0066; b3 = -0.0375; b4 = 0.0636; b5 = -0.0144;
k = 0.0162;
%
% Calculate DelS
DelS = ((Temp-15)/(1+k*(Temp-15))).*(b0+b1*(K15).∧(.5)+b2*(K15)+b3*(K15).∧(1.5) ...
+b4*(K15).∧(2)+b5*(K15).∧(2.5));
%
% Assign Coefficients for Salinity Calculation
a0 = 0.0080; a1 = -0.1692; a2 = 25.3851; a3 = 14.0941; a4 = -7.0261; a5 = 2.7081;
%
% Calculation Salinity
Sal = (a0+a1*K15.∧(.5)+a2*(K15)+a3*(K15).∧(1.5)+a4*(K15).∧(2)+a5*(K15).∧(2.5))+DelS;

To run the salinityfunc.m function, it needs to be saved in the directory where you are cur-
rently working and/or the directory where the script that calls the function is located. An example
of how to call the function from the Command Window is:

>> [Salinity] = salinityfunc(Temperature,Conductivity)

This will only return the variable Salinity to the Workspace. Note that the variable arrays
Temperature and Conductivity must have the same dimensions, and that the output variable,
Salinity, will have the same dimensions as the input variables in this specific case. The input
variables must be in the correct order.

Note: If you do not want to pass one or more of the output variables from the function to the
MATLAB Workspace, a tilde is used in place of that output variable when the function is called.

Useful Functions in MATLAB
MATLAB has a library of built-in functions that make programming quick and easy. Please ref-
erence MATLAB help or the MATLAB Documentation online or via the doc command for a
complete list of built-in functions. Below are tables with commonly useful MATLAB Functions.

Basic Mathematics
Function Description
mean(X) Returns the arithmetic mean or average of the array X.
median(X) Returns the middle value or the arithmetic mean of the two

middle values of the array X.
std(X) Returns the standard deviation of the array X.
max(X),min(X) Returns the largest (max) and smallest (min) value of array X.
sum(X) Computes and returns the sum of the array X.
cumsum(X) Computes and returns the cumulative sum of the array X. For

example, if X=[1 2 3 4], cumsum(X) returns [1 3 6 10]
sin(X), cos(x), tan(x) Returns the sine, cosine, tangent of the array X. Similar func-

tions for related trigonometric applications are available.
R = deg2rad(D) Computes and returns the angle from degrees to radians. D =

rad2deg(R) does the opposite.
C = cross(A,B) Computes and returns the cross product of A and B.
C = dot(A,B) Computes and returns the scalar dot product of A and B.
pi Returns the floating-point number nearest the value of π.
div = divergence(X,Y,U,V) Computes and returns the divergence of a 2-D vector field hav-

ing vector components U and V. The arrays X and Y define the
coordinates for the vector components U and V. See MATLAB
Documentation for details and with 3-D vector fields.

[curlz,cav] = curl(X,Y,U,V) Computes and returns the 2-D curl (curlz) and angular veloc-
ity (cav) perpendicular to the flow (in radians per time unit)
of a 2-D vector field U, V. The arrays X and Y define the co-
ordinates for the vector components U and V. See MATLAB
Documentation for details and with 3-D vector fields.

Basic Arrays and Language Fundamentals
Function Description
clc Clears only the text from Command Window display.
y = linspace(x1,x2,n) Generates and returns a vector array of n points between x1

and x2. The spacing between the points is (x2-x1)/(n-1).
y = logspace(a,b,n) Generates and returns a vector array of n logarithmically

spaced points between 10∧a and 10∧b.
X=zeros(sz1,...,szN) Returns a sz1-by-...-by-szN array of zeros where sz1,...,szN in-

dicate the size of each dimension.
[X,Y]=meshgrid(xgv,ygv) Replicates the grid vectors arrays xgv and ygv to produce and

return a full matrix array grid. This grid is represented by the
output coordinate arrays X and Y. The output coordinate ar-
rays X and Y contain copies of the grid vectors xgv and ygv
respectively. The sizes of the output arrays are determined by
the length of the grid vectors. For grid vectors xgv and ygv of
length M and N respectively, X and Y will have N rows and M
columns. See MATLAB Documentation for 3-D uses.

L=length(X) Returns the length of the largest array dimension in X. For
vectors, the length is simply the number of elements. For arrays
with more dimensions, the length is max(size(X)). The length
of an empty array is zero.

NaN Returns the IEEE arithmetic representation for Not-a-Number
(NaN). These values result from operations which have unde-
fined numerical results.

TF = isnan(A) Returns an array the same size as A containing logical 1 (true)
where the elements of A are NaNs and logical 0 (false) where
they are not.

Inf Returns the IEEE arithmetic representation for positive infin-
ity.

double(X) Returns the double-precision value for X. If X is already a
double-precision array, double has no effect.

B=fliplr(A) Returns the array A with its columns flipped in the left-right
direction (that is, about a vertical axis).

B = flipud(A) Returns the array A with its rows flipped in the up-down di-
rection (that is, about a horizontal axis).

B = sort(A,dim) Returns the sorted elements of A along dimension dim.
r = rand Returns a single random number uniformly distributed over

(0,1). Its value changes each time the command is invoked.
r = rand(m,n) Returns an m×n martix of independent, uniformly distributed

random entries.
rand('seed',57) Sets the “seed” of the pseudo-random number generator to 57.

Once the seed is set to a given value, the algorithm always
produces the same sequence of random numbers. This is useful
if you need to use the same random numbers more than once,
or to produce identical runs of the same simulation.

Basic, 2-D Graphics
Function Description
plot(X,Y,LineSpec) Creates a 2-D line plot of the data in Y versus the corresponding

values in X. If X and Y are both vectors, then they must have
equal length. If X and Y are both matrices, then they must
have equal size. LineSpec sets the line style, marker symbol,
and color. Non-linear axis plots, including loglog, semilogx,
and semilogy are also available. See MATLAB Documentation
for additional details, uses, and examples, including how to use
the LineSpec’s.

plotyy(X1,Y1,X2,Y2,fcns) Plots Y1 versus X1 with y-axis labeling on the left and plots
Y2 versus X2 with y-axis labeling on the right. The plotting
functions fcn1 and fcn2 correspond to the values X1,Y1 and
X2,Y2, respectively. They are a string specifying plot, semilogx,
semilogy, loglog, stem, or any MATLAB function that accepts
the syntax . See MATLAB Documentation for details, uses, and
examples.

histogram(X,nbins,edges) Creates a histogram plot of X that uses a number of bins spec-
ified by the scalar, nbins, and sorts X into bins with the bin
edges specified by the vector, edges. See MATLAB Documen-
tation for details, uses, and examples.

pie(X,labels) Draws a pie chart using the data in X. labels specifies text
labels for the slices. See MATLAB Documentation for details,
uses, and examples.

scatter(x,y) Creates a scatter plot with circles at the locations specified by
the vectors x and y.

title(str) Adds the title consisting of a string, str, at the top and in the
center of the current axes.

xlabel(str) Labels the x-axis of the current axes with the text specified by
str.

ylabel(str) Labels the y-axis of the current axes with the string, str.
legend(s1,...,sN) Creates a legend in the current axes using the specified strings

to label each set of data. The legend shows an icon of the as-
sociated object next to each string.

xlim(limits), ylim(limits) Specifies the x-axis and y-axis limits for the current axes. Spec-
ify limits as a two-element vector of the form [min max], where
max is a numeric value greater than min.

hold on Retains plots in the current axes so that new plots added to
the axes do not delete existing plots.

hold on Sets the hold state to off so that new plots added to the axes
clear existing plots and reset all axes properties.

figure Creates a new figure window using default property values.
view([90 90]) Places the coordinate system origin in the upper-left corner.

The i-axis is vertical, with values increasing from top to bottom.
The j-axis is horizontal with values increasing from left to right.

Loading and Understanding .mat Files
MAT-files are binary MATLAB data files (not human readable) that store variables. The load
command is used to load a binary “.mat” files into the active Workspace. If the same variable name
is in the MATALB Workspace and in the .mat file to be loaded, the variable previously in the
Workspace will be overwritten by the variable loaded in from the .mat file.

As an example of how to load a .mat data file, use the following command to load a file that con-
tains monthly averages of water temperature (oC), conductivity (µScm−1), and calculated practical
salinity (psu) from College Creek. Note the MAT file must be in your current working directory to
load.

load('MonthlyAvg_CollegeCreek_20152016.mat')

The data is this file was collected by a YSI EXO2 Sonde owned by the USNA Center for Chesa-
peake Bay Observations and Modeling (CCBOM) and deployed on an oyster reef in College Creek
by Professor Cecily Steppe, Ph.D., Instructor Andrew Keppel, and Mr. Luis Rodriguez in the
Oceanography Department. The goal of this deployment is to collect water quality data on an
activity oyster bar in the Severn River to establish an environmental baseline. For more informa-
tion about this project or if you are interested in independent research related to this deployment
or oyster restoratoin in the area, please contact either Instructor Keppel (keppel@usna.edu) or
Professor Steppe (natunewi@usna.edu). Note that the sensors on the EXO2 Sonde measure con-
ductivity and use an internal algorythm developed by YSI, Inc. to calculate practical salinity (psu).

If the file is successfully loaded, four new data arrays will show-up in the Workspace (Conductivity,
Temperature, Salinity, Month) and are now accessible for computational use in your Command
Window or a script. You can double click each variable to open it in the Variable Editor to visually
see the contents. The whos command will provide information about the arrays.

The ability to save your Workspace variables for future use is an advantage that MATLAB has
over other programming languages. For example, if you generate variables by typing in ten com-
mands into the Command Window on a Monday, you may want to access those variables again on
Wednesday. Without saving the Workspace that contains those variables using the save command
(or manually saving it), on Wednesday you would need to re-execute all ten commands in the pre-
cise order you did on Monday. What a pain!

For example, add one to the variable Month to create Month_plusone and save the workspace
as:

save('MonthlyAvg_CollegeCreek_20152016_edited.mat')

Basic Line Plotting
MATLAB provides built-in functions for visualizing data in multiple dimensions. In this lab, we
will focus only on basic line plots with titles, axis labels, and legends. A brief overview of these
basic plotting functions are listed above and more information is available through the MATLAB
Documentation and MATLAB help.

To introduce basic plotting, consider the following example script that loads monthly averages
of water temperature (oC), conductivity (µScm−1), and the practical salinity (psu) calculated from
the YSI software from the file MonthlyAvg_CollegeCreek_20152016.mat. In this example, we will
write a script to plot temperature and conductivity as a function of month, use the salinityfunc
function to calculate the practical salinity, and finally plot the Sonde calculated salinity against
the salinityfunc calculation as a function of month. Note that both the MAT file and function
need to be in the directory where the script is saved.

% SO251_ScriptExample2_Davies.m
% Instructor Alex Davies
% SO251 Desc. Physcial Oceanography
% 18 August 2022
%
% Purpose of the Program:
% 1. Load and plot month avergaed temperature and conductivity data collected
% in College Creek by a YSI EXO2 Sonde.
% 2. Call the salinityfunc.m function to calc practical salinity.
% 3. Plot the practical salinity calculated using the salinityfunc.m function
% against what was calculated by the YSI software.
%
% Worked with:
% Inst. Tracy, Mr. Hickman, and Prof. Steppe who collected the data
%
%% ---------------------------------------
% BEGIN MAIN PROGRAM
%% ---------------------------------------
%
% Clear the Workspace
clear all
close all
%
% Load the .mat file into the Workspace
load('MonthlyAvg_CollegeCreek.mat');
%
% Calculate the pratical salinity using the salinityfunc.m function
[Sal_calc] = salinityfunc(Temperature,Conductivity);
%
%% ---------------------------------------
% PLOTTING
%% ---------------------------------------

%
% Plot Temperature (C)
figure()% Creates new figure
plot(Month,Temperature,'-ko')% plots the temp w/solid black line and circles
title('Monthly Avg Temperature (C) in College Creek 2015-2016.')% title
xlabel('Month')% X axis Label
ylabel('Temperature (C)')% Y axis Label
ylim([0 30])% Y axis limits
xlim([1 12])% X axis limits
grid on % makes a gird on the plot
saveas(gcf,'CollegeCreek_Temperature.png') % saves the file
%
% Plot Conductivity (microS/cm)
figure()
plot(Month,Conductivity','--∧b')% plots the cond. w/dash blue line and triangles
title('Monthly Avg Conductivity (microS/cm) in College Creek 2015-2016.')
xlabel('Month')
ylabel('Conductivity (mircoS/cm)')
ylim([.8e4 2.5e4])
xlim([1 12])
grid on
saveas(gcf,'CollegeCreek_Conductivity.png')
%
% Plot YSI Practical Salinity and Our Calculated Salinity (PSU)
figure()
plot(Month,Salinity,'-ko')% plots the sal w/solid black line and circles
hold on% hold the figure
plot(Month,Sal_calc,'--rs')% plots the sal w/dash red line and squares
legend('YSI Prac Salinity','Calc Prac Salnity','Location','northwest')% Adds a legend
to the upper left corner
title('Monthly Avg Practical Salinity (psu) at in College Creek 2015-2016.')
xlabel('Month')
ylabel('Salinity (psu)')
xlim([1 12])
ylim([6 18])
grid on
saveas(gcf,'CollegeCreek_PracSalinity.png')

In the example above, the figure() function is used to start each new figure window for plot-
ting. You can think of this like the making a new canvas to paint on; each picture requires a new
canvas. Notice in the last figure with plots of practical salinity, the hold on function was used to
hold the figure for additional plotting. Think of this like a painter using one color on a canvas (i.e.
YSI practical salinity) then using another color on the same canvas (i.e.your calculated practical
salinity) to pain the complete picture. The saveas() function was also used in this example and
gcf tells MATLAB to save the current figure.

Oceanic Profile Plotting
Now that we’ve made a basic line plot, we need to modify the scripting techniques for an oceano-
graphic profile plot. The primary difference between the two is conceptual. In a traditional x-y plot,
the x variable is usually the independent variable while the dependent variable is plotted along the
y-axis. In the example above we plotted temperature (dependent variable on the y-axis) as it varied
with respect to time (independent variable on the x-axis). In contrast, oceanographic profile plots
show how a variable (e.g. temperature, salinity, etc.) varies as a function of depth (the independent
variable). The example below illustrates how to make this type of plot.

% SO251_ScriptExample3_Davies.m
% Instructor Alex Davies
% SO251 Desc. Physical Oceanography
% 18 August 2022
%
% Purpose of the Program:
% 1. Load data from a .mat file
% 2. Plot a vertical salinity profile.
%
% Worked with:
% Inst. Tracy and Mr. Hickman
%
%% PRELIMINARIES
%
% Clear the Workspace
clear all
close all
%
% Load the .mat file into the Workspace
load('ExampleCBayProfile.mat');
%
%% SALINITY PROFILE PLOT
%
% Create new figure window
figure(1)
%
% Clear anything that could potentially be in the plotting window
clf
%
% Plots salinity with red line and circles
plot(salinity,-depth,'o','MarkerSize',10,'LineWidth',2,'LineStyle','-','Color','r')
%
% x- and y-axis labels; title
title('Salinty Profile at the Deepweater Station','FontSize',18,'FontWeight','Bold')
xlabel('Salinity')
ylabel('Z (m)')
%

% xlims and ylims
xlim([0 19])
ylim([-26 0])
%
% Add a grid
grid on
%
% Make all fonts bigger
set(gca,'FontSize',18,'FontWeight','Bold')

Histogram Plotting
Next we will explore how to make a histogram in MATLAB. We will once again use the monthly
average data set from College Creek

% SO251_ScriptExample4_Davies.m
% Instructor Alex Davies
% SO251 Desc. Physical Oceanography
% 18 August 2022
%
% Purpose of the Program:
% 1. Load data from a .mat file
% 2. Make a histogram plot of temperature with known bin sizes
%
% Worked with:
% N/A
%
%% PRELIMINARIES
%
% Clear the Workspace
clear all
close all
%
% Load the .mat file into the Workspace
load('ExampleCBayProfile.mat');
%
%% CREATE HISTOGRAM OF TEMPERATURE WITH KNOWN BINS
%
figure(3)
clf;
histogram(Temperature,[2.5:5:32.5])% Specifies 6 bins (5 though 30) with 2.5 degrees
as the +/- range in each direction
xticks([5:5:30])% Sets the ticks along the x-axis to match the bins (5 though 30)
yticks([0:1:5])% Sets the ticks y-axis to be integers within range
ylim([0 5])
xlabel('2015-2016 Monthly Avg. College Creek Temperatures (C)')
ylabel('Frequency')

Results/An_Introduction_to_MATLAB_SO251_Fall_2023.pdf

Introduction to MATLAB Lab–SO251, Fall 2023
Instructor A.R. Davies, Updated: 14 August 2023

Getting Started
If you are an oceanography major, you have probably overheard some of your peers in upper
level courses talking about the positive and negative aspects (likely more negative) of the MATrix
LABoratory software package, or MATLAB. Some oceanography majors sadly find MATLAB to be
overly challenging and unfulfilling, while others view the software as a powerful tool and resource.
The difference in MATLAB perceptions between these two groups of students is not a function of
ability or aptitude, rather it depends on your willingness to:

• Have a positive attitude.

• Have an open mind.

• Learn a computer programming skill that will shape the way you approach problems in this
major and beyond.

• Be patient, pay attention to details, self-identify mistakes, and learn from them.

Indeed, most of the characteristics listed above are also attributes used to describe successful Offi-
cers in the U.S. Navy or U.S. Marine Corps. Hence, MATLAB (or any logical computer language)
is not only a tool you will utilize as an oceanographer, it will also help shape the way you approach
and solve problems as a military officer.

The goal of this assignment is to introduce the basic components of MATLAB in the online/cloud
environment. The skills you learn in this module will serve as a foundation for upper level course
assignments, as well as your capstone or independent research projects. Beyond this major, com-
puter programming skills are highly desirable within the Department of the Navy and in the civilian
sector. It is totally unrealistic to expect you to remember every MATLAB skill introduced in this
assignment. However, you are expected to become familiar with the topics covered in this module
to the extent that you can write your own basic MATLAB scripts online and/or know where to
find additional resources if you get stuck (including this document). The topics covered in this two
day, double period lab are:

• The Online MATLAB Environment

• Arrays Types and Basic Operators

• MATLAB Editor and Scripts

• Loading and Understanding MATLAB .mat Files

• Basic MATALB Functions

• Basic Plotting

Why MATLAB?
This is a perfectly valid question that all MATLAB users will ask themselves throughout their
MATLAB coding career. There are a large number of computer programming languages available
and each has its own advantages and disadvantages. If your objective is to build and run large,
global circulation models that can quickly tax any computer’s processor, memory, and disk space,

perhaps a compiled language like FORTRAN is the most appropriate. If you need a free, open
source software package that has a versatile library of functions and generates clean, presentation
quality graphics, Python is the language for you. If you are heavy into mathematical statistics and
don’t want a compiled language, R may be best.

As you can probably guess from the name, MATLAB began as (and still is) an incredibly powerful
tool for array or matrix manipulation. Hence, the software quickly and relatively painlessly handles
gridded data sets (like many atmospheric or oceanic models and satellite observations) for analysis
and visualization. Other advantages of using MATLAB include:

• The MATLAB desktop and online environments allow you to:

– Work interactively to test algorithms or evaluate blocks of script in the command line
without needing to compile or run your code.

– Keep track of data dimensions and types.
– Manage files including scripts, functions, data, and graphics.

• The MATLAB script editor is interactive and designed to facilitate productivity with quick
search/find features, toggling between scripts, and advanced insertable mathematical func-
tions.

• A comprehensive library of built-in algorithms and functions for data input/output, analysis,
and visualization.

• Built-in, clearly written documentation and a large user community with a lot of free exam-
ples. Both are very useful to new users.

• Built-in graphics.

• MATLAB dynamically allocates variables and multi-dimensional arrays. MATLAB further
allows users to quickly interact visually with arrays at any time.

• MATLAB Online allows you to access your files and run your code from the cloud on any
devise (including phones and tablets).

Let’s get started!

The MATLAB Environment and MATLAB Help
Getting Started with MATLAB Online
The MATLAB online environment requires you to register an account with Mathworks with the
proper USNA licensing information. See instructions from USNA ITSD on how to register you
account with the proper license on https://mathworks.com. Once you have this done, MATLAB
Online can we accessed at https://matlab.mathworks.com. Figure (1) shows the basic MATLAB
online environment.

The MATLAB online environment is a web-based graphical user interface (GUI) designed to make
managing files, data, variables, and graphics easy. Listed below are the four fundamental compo-
nents that make up the MATLAB environment (note: these are fundamentally the same for the
desktop environment). The descriptions below reference Figure (1).

Figure 1: The MATLAB online environment as shown on when first logging on at
https://matlab.mathworks.com time the software was started. The red, blue, orange, and green
boxes are added to show the locations for the online/cloud directory path, current folder window,
command window, and workspace window, respectively.

• Directory Path (red): This displays the path to the current online directory within the
MATLAB Drive (cloud based) where MATLAB is virtually operating. Files can be uploaded to
the MATLAB Drive using the ”upload” button in the with the ”Home” tab. The recommended
file structure in the MATLAB Drive is:

C:\MATLAB Drive\SO[class#]\Lab[#]

• Current Folder Panel (blue): This works in conjunction with the Directory Path. The
Current Folder window displays the contents of the cloud directory your are currently using
in the MATLAB Drive.

• Workspace Panel (green): All variables that are open in the system memory and available
for MATLAB to use are displayed in the Workspace Window. This window is incredibly
powerful and positions MATLAB ahead of most programming languages because it displays
the name and value of each variable alphabetically. As we will see, if the variable is large,
multi-dimensional array, the “value” column in the Workspace Window shows the variable
dimensions and type.

• Command Window Panel (yellow): The interactive command line where commands are
typed and executed. Inputs begin with the MATLAB prompt characters, >>.

Getting Started Using the Command Window
MATLAB commands can be entered manually into the Command Window. This simple, interactive
way to use MATLAB turns the Command Window into a calculator (i.e. if you enter a command,
you will get a result). As an example, use Command Window to calculate 1 + 2.

>> 1 + 2
ans =
3

In the example above, MATLAB was asked to calculate 1 + 2. The result is the number 3 that
is stored in the ans variable. Notice, the variable ans is now in your Workspace with the value
3 assigned to it. The ans variable is MATLAB’s generic output variable if nothing else is as-
signed. For example, let’s try the equation a = 1 + 2. However, in this case, we do not want the
answer to print to the screen, rather we only want the solution to 1+2 to be stored in the variable a.

>> a = 1 + 2;

Figure 2: The Workspace Panel in the desktop environment with the variables ans and a. This is
the same in the online environment.

Unlike the previous example, in this case the variable ans did not print to the screen with the
solution. Instead, the solution to 1 + 2 was stored in the variable a and that variable now exists in
the Workspace. Figure (2) shows that there are now two variables in the Workspace panel (ans and
a) and both contain the value 3. In addition, the contents of variable a did not print to the screen
because the line of code was followed by a semicolon. Note that printing variables to the screen is
not a big deal when using MATLAB as a calculator for simple applications. However, when you
are write more elaborate scripts, printing variables to the screen can significantly slow down the
run time because it requires more upfront system memory. Fortunately, if you are running a long

script that analyzes a large, multi-dimensional arrays and you forget to use the semicolon, there is
a way out. To stop or “kill” a command or block of MATLAB code while it is being executed, use
the following command:

Ctrl-C … should stop MATLAB after a few seconds

In the next example, assign the solution to 1 + 2 to the variable b. There are a few ways to ac-
complish this simple task. Let’s consider each individually. The first (and most obvious) example
would be to assign the variable b to equal the variable a. This can be done because the variable a
is still in the Workspace, and hence is still accessible to MATLAB.

>> b = a
>> b =
3

In this example, after b was set to equal a. the variables a and b were typed into the command line
and MATLAB printed them to the screen. The Workspace also now contains the variables a and
b, both with the value 3. Notice that the order of operations matters! If instead we had typed >>
a = b;, the following error message would be printed to the screen:

>> a = b;
Undefined function or variable 'b'.

In the above example, the logical order of the code would have caused the error because the
variable b did not previously exist within the Workspace. MATLAB assigns variables as:

VariableName = EXPRESSION

where EXPRESSION can be a constant, another variable, or a mathematical expression (i.e. for-
mula). VariableName must always be on the left hand side of the equal sign. Note that equal sign
in the assignment statement does not mean equality. The expression (right hand side) is evaluated
and the result is stored in variable denoted VariableName.

The next approach would be to physically type >> b = 1 + 2; into the command line. MAT-
LAB has a nice built-in feature that makes re-typing previously used lines of code in the Command
Window easy. Simply hit the up arrow key on your keyboard and MATLAB saved the last 25,000
commands you entered. Scroll up or down to the command you want to you. See Figure (3) for an
example.

Figure 3: The Workspace Panel in the desktop environment with easy access to the MATLAB
command history using the up arrow key. This is the same in the online environment.

MATLAB allows users to reuse and delete variable names dynamically. For example, now assign
a = 10 and compute a new variable Friday = 2× b+ a− 3. After Friday is calculated, delete the
a and b from the Workspace using the clear command.

>> a = 10;
>> Friday = 2*b + a - 3
Friday =
13
>> clear a b

In this example, Friday was calculated using the variables a and b from the Workspace. After-
ward, those variables were cleared from the Workspace and are not longer stored in MATLAB’s
memory for use. To clear all variables in the Workspace, the command is simply >> clear all .
This is particularly useful at the beginning of a script to ensure MATLAB is working with a clean
Workspace and there are no unexpected errors. Note also that: (1) MATLAB is case sensitive and
(2) order or operations still matters!

MATLAB Help
MATLAB has a number of built-in help features and resources. The first, is the help command.
The help name command displays the help text for the functionality specified by name, such as a
command, function, method, class, toolbox or variable. For example, Figure (4) shows the help text
for in the Command Windows for whos. The whos command allows you to interactively managing
data arrays in the MATLAB Workspace. whos displays in alphabetical order all variables in the
active Workspace, with information about their sizes and types.

Figure 4: The help text for in the Command Windows for whos.

If you do not specifically know the function, command, sequence, or syntax for a line or section
of code, the MATLAB Documentation is a useful resource for exploring all the MATLAB features
categorically. It can be accessed by either typing doc into the MATLAB Command Window or
online at:

http://www.mathworks.com/help/matlab/

There is power (and help!) in numbers. MathWorks, Inc., the parent company of MATALB, reports
that there more than 1 million MATLAB users worldwide, including users at 5,000 colleges and
universities. Therefore, perhaps the most powerful form of MATLAB help comes from you, the users.
If you cannot solve an issue with your code using MATLAB help or documentation, a GOOGLE
search should be your next step; the chances are that someone else has had the same problem as
you and has posted it to an online help forum seeking assistance. You cannot directly copy and
paste a block of code from an online source without proper citation. Also, you should feel free to use
each other as resources. While COPYING AND PASTING EACH OTHERS CODE IS A CLEAR

ETHICS VIOLATION, working together and helping each other is encouraged. There is a fine line
here; if it feels wrong, it likely is wrong. Please refer to your course policies or specific lab policies
on plagiarism. If you have questions, please contact your course or lab instructor.

Array Types and Basic Operators
Nearly all of MATLAB’s data analysis and processing routines involve the use of arrays, vectors,
and matrices. One of the advantages in using MATLAB (over a language like FORTRAN) is how
the software handles arrays. In many cases, basic array operations can be done in one step using
MATLAB whereas similar operations in other languages often require several lines of code. The
key difference is that MATLAB performs array operations term-by-term.

MATLAB arrays come in three basic types:

Scalar Arrays: Scalar arrays are 1 × 1, single variable arrays. For practical purposes, consider
them numbers. Hence, MATLAB can be used as a basic calculator. Example of a scalar array:

>> a = 2
a =
2

Vector Arrays: Vector arrays are either 1 × m or n × 1 dimension array. A simple, 1 × m row
vector is defined by placing a sequence of numbers between square brackets with spaces as the
delimiter. Example:

>> v = [1 3 27 99 67843]
v =
1 3 27 99 67843

A row vector can be converted into a column vector by rotating it. This operation is identical
to rotating a matrix in linear algebra. Example:
>> vrot = v'
vrot =
1
3
27
99
67843

To better understand the dimensions associated with these two vector arrays, use the whos com-
mand (example below) or reference the MATLAB Workspace.
>> whos v vrot
Name Size Bytes Class Attributes

v 1x5 40 double
vrot 5x1 40 double

MATLAB has a number of tools to quickly create large vectors that feature a repeating sequence

of numbers. For example, linspace and logspace generate linearly and logrymthically spaced vec-
tors, respectively. Refer to MATLAB help or MATLAB doc for details on these commands. The
example below demonstrates another method for creating a vector array spanning 1 to 5 (default
spacing of 1) using a colon.

>> v1 = [1:5]
v1 =
1 2 3 4 5

The example below demonstrates how to create a vector from 2 to 6 (using a colon) with a spacing
of 0.5.

>> vpt5 = [2:.5:6]
vpt5 =
2.0000 2.5000 3.0000 3.5000 4.0000 4.5000 5.0000 5.5000 6.0000

MATLAB will allow you to only access only part of a vector, if needed. Using the vpt5 vector
array above, the example below accesses only the 2nd, 3rd, and 4th elements of the vector array.

>> vpt5(2:4)
ans =
2.5000 3.0000 3.5000

Matrix Arrays: A multi-dimensional, n × m array where n is the number of rows and m is
the number of columns. Example of a 3×3 matrix array:

>> A = [1 2 3; 4 5 6; 7 8 9]
A =
1 2 3
4 5 6
7 8 9

As with vector arrays, MATLAB allows you to access certain elements in a matrix array to define
a new variable or perform a mathematical expression:
>> f = 5;
B = -f*A(1:2,2:3)
B =
-10 -15
-25 -30

Can you follow the order of operations in the above example?

Array Operations
Array operators (e.g. addition, subtraction, etc.) follow the rules of linear algebra and the basic
mathematical order of operations. The examples presented here are the typical uses of array op-
erators in meteorology and oceanography. Consult MATLAB documentation (doc command) or
MATLAB help (help command) for a complete list of array operators, their proper use, and the

order or operations.

For this section, define the following two square matrices with dimensions 2×2, along with a 1×1
scalar array:

A =

[
a11 a12
a21 a22

]

B =

[
b11 b12
b21 b22

]

S =
[
s11

]
Array Addition and Subtraction

For matrices with equal dimensions (not restricted to square matrices), addition and subtraction
of matrices is accomplished term-by-term:

A+B =

[
a11 + b11 a12 + b12
a21 + b21 a22 + b22

]

A−B =

[
a11 − b11 a12 +−b12
a21 − b21 a22 − b22

]

Addition or subtraction of a scalar is also accomplished term-by-term. In the case of a scalar, the
matrices do not need to be the same size.

A+ S =

[
a11 + s11 a12 + s11
a21 + s11 a22 + s11

]

A− S =

[
a11 − s11 a12 +−s11
a21 − s11 a22 − s11

]

For example, using the arrays defined below, use MATALB to calculate C=A+B and D=(A-B)+S.

>> A = [[1 2];[3 4]] A =
1 2
3 4
>> B = [[40 45];[50 55]] B =
40 45
50 55
>> S = 10;
>>
>> C = A+B
C =
41 47
53 59
>>
>> D = (A-B)+S

D =
-29 -33
-37 -41

Array Multiplication

There are two ways to multiply arrays in MATLAB: Matrix Multiplication and Element-wise
Multiplication. The two operations are drastically different; this section will describe both.

Matrix Multiplication

Matrices can be multiplied together only if the number of columns in the first matrix equals the
number of rows in the second matrix. For example, if an array X has dimensions 10×20, and Y has
dimensions 20×7, then the multiplication of X*Y is defined and the result is a 10×7 matrix. In this
case, Y*X is not allowed because the number of columns of Y (seven) does not match the number
of rows of X (ten). This follows the rules of matrix multiplication in linear algebra.

Using the above defined square matrix arrays A and B, the solutions to A*B and B*A are dif-
ferent:

A ∗B =

[
a11b11 + a12b21 a11b12 + a12b22
a21b11 + a22b21 a21b12 + a22b22

]

B ∗A =

[
b11a11 + b12a21 b11a12 + b12a22
b21a11 + b22a21 b21a11 + b22a21

]

Note: Multiplication of a matrix of any size by a scalar is always defined, and S*A = A*S.

For example, using the arrays defined below, use MATALB to calculate H=A*B and K=B*A.

>> A = [[1 2];[3 4]] A =
1 2
3 4
>> B = [[40 45];[50 55]] B =
40 45
50 55
>> S = 10;
>>
>> H = A*B
H =
140 155
320 355
>>
>> K = B*A
K =
175 260
215 320

Element-wise Multiplication

Two matrices which are the same size can be multiplied together using the “.* ” array opera-
tor. Matrices do not need to be square. Since the operator is applied term-by-term, A .* B and B
.* A are equal:

A. ∗B =

[
a11 ∗ b11 a12 ∗ b12
a21 ∗ b21 a22 ∗ b22

]

Note: Multiplication of a matrix of any size by a scalar is always term-by-term, so there is no
difference when using the “’ * ” or “’ .* ” operators.

For example, using the arrays defined below, use MATALB to calculate A.*B (the same as B.*A)
and A*S.
>> A = [[1 2];[3 4]]

A =
1 2
3 4
>> B = [[40 45];[50 55]] B =
40 45
50 55
>> S = 10;
>>
>> A.*B
ans =
40 90
150 220
>>
>> A*S
ans =
100 200
300 400

Array Division

Like with array multiplication, in MATLAB there are two ways to divide arrays: Matrix Divi-
sion and Element-wise Division. The two types of division mirror the two types of multiplication in
use and operation. Because of the similarities with array multiplication, this section will not outline
all aspects of the two types of array division, rather it will provide a quick overview. Please read
the above Array Multiplication section and consult MATLAB Documentation for more information.

Matrix Division

Matrix division, using either the forward (/) or backward (\) slash, is related to taking the in-
verse of a matrix while solving a set of simultaneous equations. For the same size, square matrix
arrays A and B defined above, A/B equals A*B−1 and A\B equals A−1*B. For simplicity, it is

recommended to only use the forward slash operator.

Also note, division by a scalar matrix is defined only if the scalar is in the denominator for Matrix
Division.

Element-wise Division

Array division, using either the forward (./) or backward (.\) slash, is term-by-term division ap-
plied to same-sized matrices (not restricted to square matrices). Note that A./B and A.\B do not
produce the same result:

A./B =

[
a11/b11 a12/b12
a21/b21 a22/b22

]

A.\B =

[
b11/a11 b12/a12
b21/a21 b22/a22

]

Note: Element-wise division with a scalar matrix is defined when the scalar is in either the numerator
or denominator.

Scripts and the MATLAB Editor
MATLAB M-files are ordinary ASCII text files, which contain a set of MATLAB commands to
be executed in the order listed. An M-file is a MATLAB program. The file extension of all M-files
must be “.m”. Example: mainprogram.m.

MATLAB will only recognize and execute file names ending with “.m.” For example, if MATLAB
commands are listed in a file named “mainprogram.txt”, MATLAB will not execute the commands
in this file because it does not recognize the file extention as something executable. The easiest
way to create M-file is within the MATLAB Editor. There are two types of M-files, script files and
function files. The section will only discus script M-Files, while the following section will outline
functions.

Script M-Files
Script M-files or “scripts” are common, yet powerful computer programming feature. They are often
favored over typing commands into the Command Window manually because script files execute
faster than if each command was entered one-by-one, provide a record of the commands used to
produce the result, can be edited to correct mistakes, can be modified for additional use, and can
be shared with other users for collaborative work.

While M-files do not have to be coded in MATLAB, the software has a built-in file editor that
makes the processes easier. The advantage to using the MATLAB editor is that it uses colors to
highlight comment lines, text strings, and certain programming commands (such as “if”, “else”, and
“end”). This is helpful for new programmers. Note that there is no difference between files created
with a built-in or external text editor. The percent sign denotes a comment line. MATLAB totally
ignores all text to the right of the percent sign (i.e. these lines are powerful for you to describe

what is happening line-by-line in your code).

To get started, use the “blank script” icon in the MATLAB desktop environment to open a blank
(new) M-file. All scripts for this course (and most in the Oceanography Department) must have
the following documentation at the top of each file:

Line 1: The file name
Line 2: Student Name
Line 3: Course Number and Name
Line 4: Date
Line 5: Skip with % comment sign
Line 6: Purpose of the Program (list below):
Line 7: Skip with % comment sign
Line 8: MIDN or other you worked with (list below)
Once done listing your collaborators, skip a line with % comment sign
Use %% — to denote a new section of your code

For Example:
% SO251_Lab1_Guy.m
% MIDN 3/C Some Guy
% 18 August 2022
%
% Purpose of the Program:
% 1. Learn How to Create a Script
%
% Worked with:
% 1. MIDN 2/C Some Dude
%
%% ---------------------------------------

Additional comments are required throughout the script eveytime you introduce the use of a
new function or create a new variable. The more comments, the better. For this lab (and likely
many of the courses in the Oceanography Department), if you have the prefect code/solution and
forget to comment your work, you will lose a substantial number of points. Commenting should
always be your own words and thoughts. To prevent questions about plagiarism, if an equation in
the script is from a textbook or journal article, use comments lines to cite the source and appro-
priate equation/page numbers therein.

To execute a script, type the name of the file (without the “.m”) on the command line. Note that
you must be in the directory the script is located in to run it. For example, to execute (or run) a
script M-file call program2.m, type the following into the Command Window:

>> program2 not:>> program2.m

In addition, you can hit the ”Run” button from the Script Editor.

Scripting Tips
Script files use variables already defined in the Workspace. Any additional variables defined within
the script are added to the Workspace and are available for use within the script or afterward once
the script finishes running. For example, assume the Workspace contains the variables A, B, C.
The script program2.m is executed and defines the new variables X, Y and Z. After program2.m
finishes running, the variables in the Workspace are now A, B, C, X, Y, Z. To ensure you are not
stuck with unwanted variables in the work space, it is recommended to always use the clear and
close commands as the first non-commented lines of code at the top of a script file (see example
below).

If you are copying a command from the Command Window into a script, make sure the MAT-
LAB prompt >> is removed. Copy only the command!

Save your work every few minutes, in case of a computer problem. On a PC, MATLAB saves
for you using the file extension “.asv” (meaning autosave). At times, a network crash will cause you
to lose the file you are currently editing. If it is an extremely important file, save it occasionally
with a different file name.

Script Example
Write a script that creates the a 2×5 matrix array of your choice. Rotate the matrix to form a 5×2
array. Multiply the elements in the top two rows by 5. ONLY print the top two rows of the final
array to the screen. Be sure you use the proper file header and comments where necessary.

% SO51_ScriptExample1_Davies.m
% Instructor Alex Davies
% SO251 Desc. Physical Oceanography
% 18 August 2022
%
% Purpose of the Program:
% 1. Create a 2×5 matrix array.
% 2. Rotate the matrix array, multiple the top rows by 5
% 3. Print the top two rows of the final matrix array to the screen.
%
% Worked with:
% 1. N/A.
%
%% ---------------------------------------
%
% BEGIN MAIN PROGRAM
%
%% ---------------------------------------
%
% Clear the Workspace
clear all
close all
%
% Create a 2x5 matrix array
y = [[1 2 3 4 5];[6 7 8 9 10]];
%
% Rotate the 2x5 matrix to for a 5x2 matrix
y = y';
%
% Multiply the elements in the top two rows by 5.
y(1:2,1:2) = y(1:2,1:2)*5

MATLAB Functions
Function M-files are different from script M-files. Functions are blocks of code that can be (and
often need to be) executed many times. Hence, storing a block of code that is used repeatedly in
a different file prevents a programmer from repeatedly adding the same block of code to a script file.

Functions are typically used within the main program (i.e. the script M-file) where they are “called”
or executed using variables in the existing MATLAB Workspace. Multiple functions can be called
within the same program and an individual function can be called multiple times. Functions can
even be called within another function. Listed below are some advantages and disadvantages of
using functions.

Advantages:

• Functions break your program into separate tasks (modular programming).

• With functions, you write your code once, test it, and use it many times.

• The main program is easier to read when function names and comment lines are informative.

• Functions keep the interactive MATLAB Workspace free of unnecessary variables.

• Functions can be called upon by multiple programs.

Disadvantages:

• Functions are harder to test because the local variables, which may be needed for debugging,
are not passed to the interactive MATLAB Workspace.

• Using functions increases the number of M-files to keep track of in your directory.

Making a Function
Unlike script M-files, MATLAB requires that the first line of a function M-file has a manda-
tory structure. It begins with the word “function,” which identifies the file to MATLAB as a
function instead of a script M-file. The first line contains the following elements, listed in the order
they must appear (left to right):

• The word “function”, with a space after the word.

• The output variables of the function enclosed in square brackets and separated by commas.
If the function has no output variables, the square brackets are omitted.

• The name of the function, which must exactly match the name of the file (for exampple, if
the function name is abserror, the file name must be abserror.m).

• The funtion input variables enclosed in parentheses and separated by commas. If the function
has no input variables, the parentheses are omitted

When a function is executed, a separate area of memory is used for the local variables within the
function. This memory is separate from the MATLAB Workspace and it is informally called the
“Function Workspace.”

Variable input/output flow is described below:

Input variables are the variables with the MATLAB Workspace that are passed to the
function and the stored in the Function Workspace. Output variables are generated dur-
ing the execution of the function. Once the function finishes running, these variables are
passed back and stored in the MATLABWorkspace. Note that only variables designated
as output variables in the first line of the function (in square brackets) will be passed
back. Local variables are also defined within the function and stored in the Function
Workspace, but are not designated as either input or output variables. Therefore local
variables are erased from memory at the end of the function execution and cannot be
retrieved.

Note that since the MATLAB and Function Workspaces are separate, the variable names do not
have to match. If you are writing the function, feel free to use variable names that match those
used in your main program. If you are using a function that someone else wrote, chances are the
variable names will not match your naming conventions. This is not a problem.

As an example, below is the first line of a function named abserror.m.

function [X,Y] = abserror(A,B)

In the line of code above, the input variables are A and B and the output variables calculated
within the function code are X and Y.

A block of comments should be placed at the top of the function M-file and just after the function
definition line. Functions often contain the following documentation:

• The Purpose: Describes what the function does.

• List of Input Variables: Variable names, meaning, and units

• List of Output Variables: Variable names, meaning, and units

• List of Local Variables: Variable names, meaning, and units.

• Functions Called: List name of functions called by this function. DO NOT list MATLAB
built-in functions. If none, list “None” or ommit this section.

• References: If you are using an equation from a textbook or journal article, this is a very
convenient place to document the source of your information. If you have no references, you
may omit this section.

• Author/Collaborator Name(s) and Date

Consider the function on the next page that calculates practical salinity from temperature and
conductivity measurements. The function file name is salinityfunc.m

function [Sal] = salinityfunc(Temp,Cond_measured)
% Purpose:
% Calculate practical Salinity from temperature and conductivity observations.
%
% Input Variables:
% Temp = Temperature (degrees C)
% Cond_measured = Conductivity (micro S/m)
%
% Output Variables:
% Sal = Practical Salinity (PSU)
%
% Local Variables:
% a0, a1, a2, a3, a4, a5, b0, b1, b2, b3 ,b4 ,b5, k = Coefficients
% K15 = Conductivity Ratio
% Cond_std = The conductivity of a standardized KCl solution
% with a salinity of 35 PSU at the temperature of 15 degrees C.
% DelS = Conductivity to Salinity conversion adjustment for temperature
%
% References:
% Millero, F.J., 2006, Chemical Oceanography, 3rd Edition, Taylor
% and Francis Group, pg. 63-67.
%
% Chemiasoft, 2014, Salinity Calculator: http://www.chemiasoft.com/chemd/
% salinity_calculator, accessed 20 September 2016.
%
% Written By: Inst. A.R. Davies, USNA 18 August 2022
%
%% ---
%
% Calculate the Conductivity Standard (function of temperature)
Cond_std = -0.026724.*Temp.∧3 + 4.663694.*Temp.∧2 + 861.30276.*Temp + 29035.16408;
%
% Calculate Conductivity Ratio
K15 = Cond_measured./Cond_std;
%
% Assign Coefficients for DelS Calculation
b0 = 0.0005; b1 = -0.0056; b2 = -0.0066; b3 = -0.0375; b4 = 0.0636; b5 = -0.0144;
k = 0.0162;
%
% Calculate DelS
DelS = ((Temp-15)/(1+k*(Temp-15))).*(b0+b1*(K15).∧(.5)+b2*(K15)+b3*(K15).∧(1.5) ...
+b4*(K15).∧(2)+b5*(K15).∧(2.5));
%
% Assign Coefficients for Salinity Calculation
a0 = 0.0080; a1 = -0.1692; a2 = 25.3851; a3 = 14.0941; a4 = -7.0261; a5 = 2.7081;
%
% Calculation Salinity
Sal = (a0+a1*K15.∧(.5)+a2*(K15)+a3*(K15).∧(1.5)+a4*(K15).∧(2)+a5*(K15).∧(2.5))+DelS;

To run the salinityfunc.m function, it needs to be saved in the directory where you are cur-
rently working and/or the directory where the script that calls the function is located. An example
of how to call the function from the Command Window is:

>> [Salinity] = salinityfunc(Temperature,Conductivity)

This will only return the variable Salinity to the Workspace. Note that the variable arrays
Temperature and Conductivity must have the same dimensions, and that the output variable,
Salinity, will have the same dimensions as the input variables in this specific case. The input
variables must be in the correct order.

Note: If you do not want to pass one or more of the output variables from the function to the
MATLAB Workspace, a tilde is used in place of that output variable when the function is called.

Useful Functions in MATLAB
MATLAB has a library of built-in functions that make programming quick and easy. Please ref-
erence MATLAB help or the MATLAB Documentation online or via the doc command for a
complete list of built-in functions. Below are tables with commonly useful MATLAB Functions.

Basic Mathematics
Function Description
mean(X) Returns the arithmetic mean or average of the array X.
median(X) Returns the middle value or the arithmetic mean of the two

middle values of the array X.
std(X) Returns the standard deviation of the array X.
max(X),min(X) Returns the largest (max) and smallest (min) value of array X.
sum(X) Computes and returns the sum of the array X.
cumsum(X) Computes and returns the cumulative sum of the array X. For

example, if X=[1 2 3 4], cumsum(X) returns [1 3 6 10]
sin(X), cos(x), tan(x) Returns the sine, cosine, tangent of the array X. Similar func-

tions for related trigonometric applications are available.
R = deg2rad(D) Computes and returns the angle from degrees to radians. D =

rad2deg(R) does the opposite.
C = cross(A,B) Computes and returns the cross product of A and B.
C = dot(A,B) Computes and returns the scalar dot product of A and B.
pi Returns the floating-point number nearest the value of π.
div = divergence(X,Y,U,V) Computes and returns the divergence of a 2-D vector field hav-

ing vector components U and V. The arrays X and Y define the
coordinates for the vector components U and V. See MATLAB
Documentation for details and with 3-D vector fields.

[curlz,cav] = curl(X,Y,U,V) Computes and returns the 2-D curl (curlz) and angular veloc-
ity (cav) perpendicular to the flow (in radians per time unit)
of a 2-D vector field U, V. The arrays X and Y define the co-
ordinates for the vector components U and V. See MATLAB
Documentation for details and with 3-D vector fields.

Basic Arrays and Language Fundamentals
Function Description
clc Clears only the text from Command Window display.
y = linspace(x1,x2,n) Generates and returns a vector array of n points between x1

and x2. The spacing between the points is (x2-x1)/(n-1).
y = logspace(a,b,n) Generates and returns a vector array of n logarithmically

spaced points between 10∧a and 10∧b.
X=zeros(sz1,...,szN) Returns a sz1-by-...-by-szN array of zeros where sz1,...,szN in-

dicate the size of each dimension.
[X,Y]=meshgrid(xgv,ygv) Replicates the grid vectors arrays xgv and ygv to produce and

return a full matrix array grid. This grid is represented by the
output coordinate arrays X and Y. The output coordinate ar-
rays X and Y contain copies of the grid vectors xgv and ygv
respectively. The sizes of the output arrays are determined by
the length of the grid vectors. For grid vectors xgv and ygv of
length M and N respectively, X and Y will have N rows and M
columns. See MATLAB Documentation for 3-D uses.

L=length(X) Returns the length of the largest array dimension in X. For
vectors, the length is simply the number of elements. For arrays
with more dimensions, the length is max(size(X)). The length
of an empty array is zero.

NaN Returns the IEEE arithmetic representation for Not-a-Number
(NaN). These values result from operations which have unde-
fined numerical results.

TF = isnan(A) Returns an array the same size as A containing logical 1 (true)
where the elements of A are NaNs and logical 0 (false) where
they are not.

Inf Returns the IEEE arithmetic representation for positive infin-
ity.

double(X) Returns the double-precision value for X. If X is already a
double-precision array, double has no effect.

B=fliplr(A) Returns the array A with its columns flipped in the left-right
direction (that is, about a vertical axis).

B = flipud(A) Returns the array A with its rows flipped in the up-down di-
rection (that is, about a horizontal axis).

B = sort(A,dim) Returns the sorted elements of A along dimension dim.
r = rand Returns a single random number uniformly distributed over

(0,1). Its value changes each time the command is invoked.
r = rand(m,n) Returns an m×n martix of independent, uniformly distributed

random entries.
rand('seed',57) Sets the “seed” of the pseudo-random number generator to 57.

Once the seed is set to a given value, the algorithm always
produces the same sequence of random numbers. This is useful
if you need to use the same random numbers more than once,
or to produce identical runs of the same simulation.

Basic, 2-D Graphics
Function Description
plot(X,Y,LineSpec) Creates a 2-D line plot of the data in Y versus the corresponding

values in X. If X and Y are both vectors, then they must have
equal length. If X and Y are both matrices, then they must
have equal size. LineSpec sets the line style, marker symbol,
and color. Non-linear axis plots, including loglog, semilogx,
and semilogy are also available. See MATLAB Documentation
for additional details, uses, and examples, including how to use
the LineSpec’s.

plotyy(X1,Y1,X2,Y2,fcns) Plots Y1 versus X1 with y-axis labeling on the left and plots
Y2 versus X2 with y-axis labeling on the right. The plotting
functions fcn1 and fcn2 correspond to the values X1,Y1 and
X2,Y2, respectively. They are a string specifying plot, semilogx,
semilogy, loglog, stem, or any MATLAB function that accepts
the syntax . See MATLAB Documentation for details, uses, and
examples.

histogram(X,nbins,edges) Creates a histogram plot of X that uses a number of bins spec-
ified by the scalar, nbins, and sorts X into bins with the bin
edges specified by the vector, edges. See MATLAB Documen-
tation for details, uses, and examples.

pie(X,labels) Draws a pie chart using the data in X. labels specifies text
labels for the slices. See MATLAB Documentation for details,
uses, and examples.

scatter(x,y) Creates a scatter plot with circles at the locations specified by
the vectors x and y.

title(str) Adds the title consisting of a string, str, at the top and in the
center of the current axes.

xlabel(str) Labels the x-axis of the current axes with the text specified by
str.

ylabel(str) Labels the y-axis of the current axes with the string, str.
legend(s1,...,sN) Creates a legend in the current axes using the specified strings

to label each set of data. The legend shows an icon of the as-
sociated object next to each string.

xlim(limits), ylim(limits) Specifies the x-axis and y-axis limits for the current axes. Spec-
ify limits as a two-element vector of the form [min max], where
max is a numeric value greater than min.

hold on Retains plots in the current axes so that new plots added to
the axes do not delete existing plots.

hold on Sets the hold state to off so that new plots added to the axes
clear existing plots and reset all axes properties.

figure Creates a new figure window using default property values.
view([90 90]) Places the coordinate system origin in the upper-left corner.

The i-axis is vertical, with values increasing from top to bottom.
The j-axis is horizontal with values increasing from left to right.

Loading and Understanding .mat Files
MAT-files are binary MATLAB data files (not human readable) that store variables. The load
command is used to load a binary “.mat” files into the active Workspace. If the same variable name
is in the MATALB Workspace and in the .mat file to be loaded, the variable previously in the
Workspace will be overwritten by the variable loaded in from the .mat file.

As an example of how to load a .mat data file, use the following command to load a file that con-
tains monthly averages of water temperature (oC), conductivity (µScm−1), and calculated practical
salinity (psu) from College Creek. Note the MAT file must be in your current working directory to
load.

load('MonthlyAvg_CollegeCreek_20152016.mat')

The data is this file was collected by a YSI EXO2 Sonde owned by the USNA Center for Chesa-
peake Bay Observations and Modeling (CCBOM) and deployed on an oyster reef in College Creek
by Professor Cecily Steppe, Ph.D., Instructor Andrew Keppel, and Mr. Luis Rodriguez in the
Oceanography Department. The goal of this deployment is to collect water quality data on an
activity oyster bar in the Severn River to establish an environmental baseline. For more informa-
tion about this project or if you are interested in independent research related to this deployment
or oyster restoratoin in the area, please contact either Instructor Keppel (keppel@usna.edu) or
Professor Steppe (natunewi@usna.edu). Note that the sensors on the EXO2 Sonde measure con-
ductivity and use an internal algorythm developed by YSI, Inc. to calculate practical salinity (psu).

If the file is successfully loaded, four new data arrays will show-up in the Workspace (Conductivity,
Temperature, Salinity, Month) and are now accessible for computational use in your Command
Window or a script. You can double click each variable to open it in the Variable Editor to visually
see the contents. The whos command will provide information about the arrays.

The ability to save your Workspace variables for future use is an advantage that MATLAB has
over other programming languages. For example, if you generate variables by typing in ten com-
mands into the Command Window on a Monday, you may want to access those variables again on
Wednesday. Without saving the Workspace that contains those variables using the save command
(or manually saving it), on Wednesday you would need to re-execute all ten commands in the pre-
cise order you did on Monday. What a pain!

For example, add one to the variable Month to create Month_plusone and save the workspace
as:

save('MonthlyAvg_CollegeCreek_20152016_edited.mat')

Basic Line Plotting
MATLAB provides built-in functions for visualizing data in multiple dimensions. In this lab, we
will focus only on basic line plots with titles, axis labels, and legends. A brief overview of these
basic plotting functions are listed above and more information is available through the MATLAB
Documentation and MATLAB help.

To introduce basic plotting, consider the following example script that loads monthly averages
of water temperature (oC), conductivity (µScm−1), and the practical salinity (psu) calculated from
the YSI software from the file MonthlyAvg_CollegeCreek_20152016.mat. In this example, we will
write a script to plot temperature and conductivity as a function of month, use the salinityfunc
function to calculate the practical salinity, and finally plot the Sonde calculated salinity against
the salinityfunc calculation as a function of month. Note that both the MAT file and function
need to be in the directory where the script is saved.

% SO251_ScriptExample2_Davies.m
% Instructor Alex Davies
% SO251 Desc. Physcial Oceanography
% 18 August 2022
%
% Purpose of the Program:
% 1. Load and plot month avergaed temperature and conductivity data collected
% in College Creek by a YSI EXO2 Sonde.
% 2. Call the salinityfunc.m function to calc practical salinity.
% 3. Plot the practical salinity calculated using the salinityfunc.m function
% against what was calculated by the YSI software.
%
% Worked with:
% Inst. Tracy, Mr. Hickman, and Prof. Steppe who collected the data
%
%% ---------------------------------------
% BEGIN MAIN PROGRAM
%% ---------------------------------------
%
% Clear the Workspace
clear all
close all
%
% Load the .mat file into the Workspace
load('MonthlyAvg_CollegeCreek.mat');
%
% Calculate the pratical salinity using the salinityfunc.m function
[Sal_calc] = salinityfunc(Temperature,Conductivity);
%
%% ---------------------------------------
% PLOTTING
%% ---------------------------------------

%
% Plot Temperature (C)
figure()% Creates new figure
plot(Month,Temperature,'-ko')% plots the temp w/solid black line and circles
title('Monthly Avg Temperature (C) in College Creek 2015-2016.')% title
xlabel('Month')% X axis Label
ylabel('Temperature (C)')% Y axis Label
ylim([0 30])% Y axis limits
xlim([1 12])% X axis limits
grid on % makes a gird on the plot
saveas(gcf,'CollegeCreek_Temperature.png') % saves the file
%
% Plot Conductivity (microS/cm)
figure()
plot(Month,Conductivity','--∧b')% plots the cond. w/dash blue line and triangles
title('Monthly Avg Conductivity (microS/cm) in College Creek 2015-2016.')
xlabel('Month')
ylabel('Conductivity (mircoS/cm)')
ylim([.8e4 2.5e4])
xlim([1 12])
grid on
saveas(gcf,'CollegeCreek_Conductivity.png')
%
% Plot YSI Practical Salinity and Our Calculated Salinity (PSU)
figure()
plot(Month,Salinity,'-ko')% plots the sal w/solid black line and circles
hold on% hold the figure
plot(Month,Sal_calc,'--rs')% plots the sal w/dash red line and squares
legend('YSI Prac Salinity','Calc Prac Salnity','Location','northwest')% Adds a legend
to the upper left corner
title('Monthly Avg Practical Salinity (psu) at in College Creek 2015-2016.')
xlabel('Month')
ylabel('Salinity (psu)')
xlim([1 12])
ylim([6 18])
grid on
saveas(gcf,'CollegeCreek_PracSalinity.png')

In the example above, the figure() function is used to start each new figure window for plot-
ting. You can think of this like the making a new canvas to paint on; each picture requires a new
canvas. Notice in the last figure with plots of practical salinity, the hold on function was used to
hold the figure for additional plotting. Think of this like a painter using one color on a canvas (i.e.
YSI practical salinity) then using another color on the same canvas (i.e.your calculated practical
salinity) to pain the complete picture. The saveas() function was also used in this example and
gcf tells MATLAB to save the current figure.

Oceanic Profile Plotting
Now that we’ve made a basic line plot, we need to modify the scripting techniques for an oceano-
graphic profile plot. The primary difference between the two is conceptual. In a traditional x-y plot,
the x variable is usually the independent variable while the dependent variable is plotted along the
y-axis. In the example above we plotted temperature (dependent variable on the y-axis) as it varied
with respect to time (independent variable on the x-axis). In contrast, oceanographic profile plots
show how a variable (e.g. temperature, salinity, etc.) varies as a function of depth (the independent
variable). The example below illustrates how to make this type of plot.

% SO251_ScriptExample3_Davies.m
% Instructor Alex Davies
% SO251 Desc. Physical Oceanography
% 18 August 2022
%
% Purpose of the Program:
% 1. Load data from a .mat file
% 2. Plot a vertical salinity profile.
%
% Worked with:
% Inst. Tracy and Mr. Hickman
%
%% PRELIMINARIES
%
% Clear the Workspace
clear all
close all
%
% Load the .mat file into the Workspace
load('ExampleCBayProfile.mat');
%
%% SALINITY PROFILE PLOT
%
% Create new figure window
figure(1)
%
% Clear anything that could potentially be in the plotting window
clf
%
% Plots salinity with red line and circles
plot(salinity,-depth,'o','MarkerSize',10,'LineWidth',2,'LineStyle','-','Color','r')
%
% x- and y-axis labels; title
title('Salinty Profile at the Deepweater Station','FontSize',18,'FontWeight','Bold')
xlabel('Salinity')
ylabel('Z (m)')
%

% xlims and ylims
xlim([0 19])
ylim([-26 0])
%
% Add a grid
grid on
%
% Make all fonts bigger
set(gca,'FontSize',18,'FontWeight','Bold')

Histogram Plotting
Next we will explore how to make a histogram in MATLAB. We will once again use the monthly
average data set from College Creek

% SO251_ScriptExample4_Davies.m
% Instructor Alex Davies
% SO251 Desc. Physical Oceanography
% 18 August 2022
%
% Purpose of the Program:
% 1. Load data from a .mat file
% 2. Make a histogram plot of temperature with known bin sizes
%
% Worked with:
% N/A
%
%% PRELIMINARIES
%
% Clear the Workspace
clear all
close all
%
% Load the .mat file into the Workspace
load('ExampleCBayProfile.mat');
%
%% CREATE HISTOGRAM OF TEMPERATURE WITH KNOWN BINS
%
figure(3)
clf;
histogram(Temperature,[2.5:5:32.5])% Specifies 6 bins (5 though 30) with 2.5 degrees
as the +/- range in each direction
xticks([5:5:30])% Sets the ticks along the x-axis to match the bins (5 though 30)
yticks([0:1:5])% Sets the ticks y-axis to be integers within range
ylim([0 5])
xlabel('2015-2016 Monthly Avg. College Creek Temperatures (C)')
ylabel('Frequency')

Results/1_Exo Sonde Deployment Instructions.pdf

USNA Oceanography Department

EXO SONDE DEPLOYMENT INSTRUCTIONS

FIELD CABLES

EXO1 SONDE

EXO2 SONDE

HANDHELD

1. After connecting all cables and strain reliefs securely, turn handheld unit on
by pressing and holding the green power button.

2. Remove the blue calibration cap from sensor guard to deploy.
3. The deployment of this sonde requires three people:

PERSON 1: Sonde Deployment
PERSON 2: Cord Controller
PERSON 3: Handheld Controller

4. PERSON 1 will lower the sonde until the sensors are just touching the water
and hold there until further notice.

5. PERSON 3 should find “Start Logging…” on the handheld home screen and
press the enter (↵) button.

6. After hitting the enter (↵) button, select Site [INSERT SITE NAME HERE] using
the down (↓) button and again press the enter (↵) button.

7. Select the site you are collecting data from using the up (↑) and down (↓)
buttons.

8. Press the enter (↵) button when the proper site is highlighted.
9. Press the enter (↵) button again when the Dashboard has highlighted ‘Select

[INSERT SITE NAME]’ in green.
10. To being logging, press the enter (↵) button again by selecting ‘Start Now!’ in

green.
11. Once PERSON 3 gives the okay, PERSON 1 will slowly lower the sonde until

they reach the approximate bottom depth of the site and then slowly bring
the sonde back to the surface. During this process, PERSON 2 will make sure
the data cable is properly coiled.

12. Once the sonde has reached the surface, PERSON 3 will select ‘Stop Logging
[00:00:00]’ by pressing the enter (↵) button on the main handheld
dashboard.

13. Proceed to the next site and repeat – remembering to change the site name
at each unique location!

14. Once back in the lab, the sonde should be rinsed with fresh water and
handheld powered off completely.

NOTE: When the EXO Handheld is turned on, the GPS function will initiate a fix of the
location. This may take some time, and the handheld should remain stationary and have a
view of the sky.

Top-Side Micro USM Connector

LCD Screen

Handstrap

Brightness
Enter/Return
Power On/Off

Function Keys
Escape

Arrow Keys
Help Menu

Strain Relief

Male (Black) Wet-Mate Connector

Female (White) Wet-Mate Connector

Rugged Field Cable

Removeable Bail

6-Pin Cable Connector

Upper Battery Compartment Seal

Battery Compartment

Battery Cover

Lower Battery Compartment Seal

Pressure Transducer Opening

Red LED Indicator (Sonde Status)
Blue LED Indicator (Bluetooth)
Magnetic On/Off Switch

Bulkhead
Sensors
Port Plug

Calibration Cup

Sensor Guard
Guard Weight

Removeable Bail
Auxiliary Port
6-Pin Cable Connector

Battery Compartment Seal

Battery Cap/Pressure Relief Valve

Battery Compartment

Magnetic On/Off Switch
Red LED Indicator (Sonde Status)
Blue LED Indicator (Bluetooth)
Bulkhead
Sensors
Port Plug

Sensor Guard

Calibration Cup

Central Wiper

Guard Weight

HANDHELD: Edit handheld
settings such as date/time,
displayed measurement
units, and logging options.

DEPLOY: View and edit a
sonde’s deployment settings
or check the status of
current deployment.

CALIBRATION: Calibrate
sensors installed in the
sonde, check the system’s
SmartQC status, and setup
calibration reminders.

DATA: View, delete, or
backup logged data or
calibration records stored
on the handheld; transfer
data from the connected
sonde.

DASHBOARD: View and log live data
from the sonde. Note that the Dashboard
is the main display and does not have a
hot key.

Wetmate Cable Connector

Results/1520-0442(1989)002_1507_tedcfe_2.0.co_2.pdf

